
The Algol 68 Jargon File

Jose E. Marchesi

Copyright c© 2025 Jose E. Marchesi.

You can redistribute and/or modify this document under the terms of the GNU
General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

Alternatively, permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts.

i

Table of Contents

1 Introduction . 2

2 Metalanguage . 4
2.1 Aleph . 4
2.2 Pseudo Comment . 4
2.3 Reference Language . 5
2.4 Representation Language . 5
2.5 Strict Language . 6
2.6 Taggle . 6

3 Language . 8
3.1 Actual Parameter . 8
3.2 Affirmation . 8
3.3 Comment . 9
3.4 Completer . 9
3.5 Contraction . 10
3.6 Declarer . 11
3.7 Development . 12
3.8 Enquiry Clause . 12
3.9 Environment Enquiry . 13
3.10 Expression . 14
3.11 Field Selector . 15
3.12 Flip and Flop . 15
3.13 Formal Declarer . 15
3.14 Formal Parameter . 16
3.15 Frobyt . 17
3.16 Go-On Symbol . 18
3.17 Incestuous Union . 18
3.18 Indicator . 19
3.19 Longsety . 20
3.20 Monads and Nomads . 20
3.21 Mode Indication . 21
3.22 Mode-Unit . 22
3.23 Ravelling . 22
3.24 Shortsety . 23
3.25 Sizety . 23
3.26 Statement . 24
3.27 Specification Part . 24
3.28 String Break . 25
3.29 Structure Display . 25
3.30 Subname . 26
3.31 Subscript . 26
3.32 Symbol . 27
3.33 Token . 27
3.34 Trimmer . 28
3.35 Vacuum . 29
3.36 Void-Unit . 30

ii

3.37 Well-Formedness . 31
3.38 Widening . 32
3.39 Worthy Character . 32

4 Implementation . 34

5 Other . 35
5.1 Orthogonal . 35
5.2 Uninitiated Reader . 36

Concept Index . 37

GNU General Public License . 38

GNU Free Documentation License . 48
ADDENDUM: How to use this License for your documents . 54

1

This file provides definitions for many terms used in the context of the Algol 68 programming
language and associated technologies. You can find this file in other formats along with the
sources at https://jemarch.net.

https://jemarch.net

2

1 Introduction

As C. H. Lindsey puts it in his legendary Informal Introduction to Algol 68, a language in which
fundamental concepts combine in an orthogonal way requires very precise terminology. Algol 68
is the orthogonal programming language for antonomasia, and it for sure introduces a rich set
of very precise terminology.

Furthermore, when the language got introduced the IFIPWG-2.1 took great care of using new
terms for concepts that had their rough similar equivalences in other programming languages,
instead of using the most common terms. Such is the case of assignation, which is similar but
not exactly the same than the assignment of other programming languages. Many of the new
terms are neologisms created for the occasion, also for good reasons as discussed below.

This all means that the Algol 68 programmers, implementors and aficionados need to get
familiar with a very precise and somewhat extensive terminology. That may be quite confusing
to the uninitiated.

As with most things related to Algol 68, mastering the terminology requires a little bit of
effort and time, but believe me, it pays back in spades. Watching two Algol 68 programmers
discussing about their programs is like watching two well greased machines: the terms they use
are precise, and they can use terms referring to domain-specific concepts that would require
the usage of a (probably not very well constructed on the fly) metaphor or analogy in other
programming languages, and very little if anything is lost in translation. The communication is
fast, rich and precise. It is also fun.

This jargon file is an attempt to gather and summarize this terminology for the benefit of
anyone introducing herself in the enthralling world of algorithmic languages.

How to use this file

Each entry in the file describes the meaning of one particular term, including a more or less
extensive description of the entity or concept described by the term. This usually involves
programming examples, but note that the purpose of this file is not to be an Algol 68 manual.
Usage examples of the term are shown in the form of hypothetical lines of dialogues. When
applicable, the syntax of the concept associated with the term will be also explained as simplified
syntactic rules from the Report. Finally, references to other entries or to the bibliography are
included in the entries.

So how to look for a term in this file?

If you are reading this document in an info reader, then you can press m and introduce
the term you are looking for. Your info reader shall be nice enough to provide auto-complete.
References can then be followed the same way.

If you are reading this document as a man-page, then you will find references to all the entries
of the jargon file in the SEE ALSO section below.

If you are reading this document as a PDF, then you can use either the table of contents or
the concepts index you can found in the appendices. Depending on how nice your PDF reader
is, and assuming you are not reading a printed document, you can probably follow the references
by clicking on them.

If you are reading this document as an HTML in some website, then you can follow the
hyperlinks in table of contents and indexes.

Bibliography

• The Revised Report on the Algorithmic Language Algol 68 By A. van Wijngaarden, B.J.
Mailloux, J.E.L Peck, C.H.A. Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens and
R.G. Fisker.

Referenced by marks like [RR section].

3

• The Report on the Standard Hardware Representation for ALGOL 68 By Wilfred J. Hansen
and Hendrik Boom.

Referenced by marks like [SHR section].

• The Informal Introduction to Algol68 By C.H. Lindsey and V.D. Meulen.

Referenced by marks like [II section]

4

2 Metalanguage

2.1 Aleph

Meaning

The transput section of the Revised Report consists in a description of the transput facilities
in the form of near-Algol 68 code, intended to serve as a precise reference of the intended
programming interface and also of the semantics of the several operations like print or read.
The same technique is used to describe the standard prelude.

Consider for example the mode channel, which part of the standard transput:

mode channel =

struct (proc(ref book)bool reset, set,

get, put, bi, compress, reidf,

proc bool estab,

proc pos max pos,

...)

The fields of values of mode channel are not supposed to be accessed by users. In fact, one
may imagine a transput implementation that uses different names for the fields, or a completely
different set of fields. Algol 68, however, doesn’t have secret fields.

In order to denote structure fields that-should-not-be-named, the authors of the Report
resorted to a clever syntactic trick: to precede the fields names with a metanotion that produces
an infinite number of f’s, which are obviously impossible to write. Something like:

A) F :: f, F ; F.

a) unmentionable field : F tag.

In order to represent the productions of the metanotion F in the representation language, they
chose the symbol Aleph, since it represents an alepth-sub-zero number of fs. Thus the mode
above would be written, using % for Aleph:

mode channel =

struct (proc(ref book)bool % reset, % set,

% get, % put, % bi, % compress, % reidf,

proc bool % estab,

proc pos % max pos,

...)

The WG 2.1, however, didn’t appreciate the joke, and ended using some strange glyph in
both Report and Revised Report to represent Aleph.

2.2 Pseudo Comment

Meaning

The chapter 10 of the Algol 68 Revised Report describes the standard environment in which
programs run. This chapter includes many code snippets with declarations and other entities
that describe the interface provided by the standard preludes. However, code for the preludes is
not given in full, suitable to be compiled form: many details are abstracted. Furthermore, the
code that is actually provided in more detail is intended to serve as reference algorithms and is
not necessarily the most efficient or even convenient way to encode the expressed logic.

In addition to regular comments, the code snippets in this part of the Report use pseudo-
comments, which are delimited by a pair of bold tags c, and represent either a declarer or a
closed-clause, as suggested by the contents of the pseudo-comment.

Chapter 2: Metalanguage 5

An example of the usage of pseudo-comments from the report:

op round = (real a) int:
c An integral value, if one exists, which is

widenable to a real value differing by not more

than one-half from the value of ’a’

c;

Many other texts, articles and books in the Algol 68 sphere make use of pseudo-comments.

It may be even possible to add support to compilers so they recognize them and compile them
into some appropriate run-time diagnostic, which could be helpful in top-level programming.

See Also

• See Section 3.3 [Comment], page 9,

• [RR 10.1.3.step7]

2.3 Reference Language

Meaning

The reference language is a particular representation language for Algol 68, used and suggested
by the Revised Report. All the code examples in the report are written using the reference
language.

Implementations of the language are encouraged (but not strictly required) to use represen-
tations that are reasonably close to the reference language whenever possible.

The reference language prescribes a representation (typographical marks) for many of the
symbols in the strict language, including the infinite set of TAX-symbols, but there is still some
room for implementations to diverge in the following aspects:

− Some symbols are not given a representation in the reference language, but could be given
one by some other representation language. An example is brief-pragmat-symbol. Note
that this does not apply to the symbols letter-aleph-symbol and primal-symbols for
which no representation should exist out of the representation of the preludes.

− Implementations can add any number of representations for style-TALLY-letter-ABC-

symbol and style-TALLY-monad-symbols, and any terminal production of STYLE other

PRAGMENT item and other string item.

− The representation language provides several alternative representations for some symbols,
typically operator symbols. In that case, implementations of the reference language must
implement at least one of these representations.

− If an implementation uses an alphabet generated by the meta-notion ABC that differs from
the reference language, then the resulting language is a variant of Algol 68. This happens
in translations of the reference language to different natural languages.

See Also

• Section 2.5 [Strict Language], page 6,

• Section 2.4 [Representation Language], page 5,

• [RR 9.4]

2.4 Representation Language

Chapter 2: Metalanguage 6

Meaning

A construct in the strict language, which consists in a production tree leading to a terminal
production consisting in a sequence of symbols such as ’bold begin symbol’ ’skip symbol’

’bold end symbol’, must be represented somehow so it can be read by either a human inter-
preter or some mechanical interpreter such as a computer program. A representation language
assigns some particular representation to each symbol.

It is thus possible to represent programs in the Algol 68 strict language in different ways,
tailored to different purposes. A publication language will likely use rich text, fonts and/or
graphical features in order to represent symbols such as ’bold begin symbol’, ’bold letter a

symbol’ or ’brief case symbol’. A programming language to be used by programmers and
text processing programs would typically use some stropping regime, resulting for example in
BEGIN SKIP END. Finally, a hardware language could use a compact binary representation to
ease the storage, transmission and automatic processing of the programs.

The Revised Report suggests and uses a particular representation language, which is the
reference language. Implementations are encouraged to use representations that are reasonably
closed to the reference language whenever possible.

See Also

• Section 2.5 [Strict Language], page 6,

• Section 2.3 [Reference Language], page 5,

• [RR 9.3]

2.5 Strict Language

Meaning

A construct in the strict language is a production tree produced by the Algol 68 two-level
grammar’s hyper-rules and meta-production rules. The production tree leads to a terminal
production whose constituents are symbols.

For example, the following particular program in the reference language:

begin skip end

corresponds to a program in the strict language whose terminal production is:

’bold begin symbol’ ’skip symbol’ ’bold end symbol’

See Also

• Section 2.4 [Representation Language], page 5,

2.6 Taggle

Meaning

The Standard Hardware Representation defines a taggle as a nonempty sequence of letters and
digits. Taggles are the constituents of tags. For example, in:

int age of retirement = 65;

The tag age of retirement is composed by three taggles: age, of and retirement. Note
how typographical display features (space characters in this case) can appear between taggles
in a tag.

Chapter 2: Metalanguage 7

See Also

• [RR 9.4.2.2.a]

• [SHR 1]

8

3 Language

3.1 Actual Parameter

Meaning

An actual parameter is the right hand side of an identity declaration, and consists of an unit
whose context is strong. The value yielded by this unit, after strong coercion if necessary, shall
be of the same mode than the one specified by the formal declarer. The value is ascribed to the
defining identifier in the identity declaration.

For example, in the following identity declaration the actual parameter is 0, which is in a
strong context, and therefore gets widening to match the mode specified by the formal declarer
real:

real ratio = 0;

Actual parameters also appear in routine calls, where they define the values passed to a
procedure or an operator. This highlights that in Algol 68 the mechanism of associating formal
parameters with actual parameters is the identity declaration: during a function call the internal
values provided in the call get ascribed to the formal parameters. For example, in the following
routine call:

multiply vectors ((10, 20), (1, 2));

The actual parameters are (10, 20) and (1, 2), which are row displays of some vector mode.

Syntax

Simplified [RR 4.4.1.A,d]:

A) MODINE :: MODE ; routine.

d) MODE source for MODINE:

where (MODINE) is (MODE), MODE source;

where (MODINE) is (routine), MODE routine text.

Simplified [RR 5.2.1.1.c]:

c) MODE source:

strong MODE unit.

We are not including here the rules for routine text but these can be found in [RR 5.4.1.a,b].

See Also

• Section 3.14 [Formal Parameter], page 16,

• Section 3.13 [Formal Declarer], page 15,

• [II 2.2.1]

• [RR 4.4.1.d]

3.2 Affirmation

Meaning

The affirmation operation is defined for integral and real values in the standard prelude as:

op + = (l int a) l int: a;

op + = (l real a) l real: a;

In both cases the given value is returned as such, resulting in that a = +a.

Chapter 3: Language 9

See Also

• [RR 10.2.3.3]

• [RR 10.2.3.4]

3.3 Comment

Meaning

Like in other programming languages, comments in Algol 68 programs are intended to document
the program and their contents are ignored by the compiler: they are stripped out by the lexer.
There are three styles of comments, that differ only by the delimiters used to begin and end the
comment.

The first style uses comment to delimit the comment contents:

comment
This program does foo and bar.

Written by John Doe.

comment

The second style uses co to delimit the comment contents:

if not ok

then co This happens rarely co
abort

fi

The third style uses # to delimit the comment contents:

print (whatever) # XXX remove trace #

Comments of different styles can be nested. Therefore up to three nesting levels is supported,
which must be more than enough.

3.4 Completer

Meaning

Serial clauses contain zero or more declarations and at least one unit. When more than an unit
is present then the value yielded by the last one is the value yielded by the serial clause. For
example, in the serial clause:

(int tmp := a; a := b; a / tmp)

The value yielded by the unit a / tmp is the value yielded by the serial clause. Sometimes,
however, it is useful to have more than one “exit point” in a serial clause. For example:

begin
int tmp := a;

a := b;

if tmp = 0 then divbyzero fi;
a / temp exit

divbyzero:

0

end

When the unit a / temp in the serial clause above gets elaborated, the fact it is separated
from the next phrase by an exit rather than a go-on symbol (semicolon) marks it as an exit
point and therefore as a mode-unit or expression rather than a statement to be voided. The
syntax mandates that an exit shall always be followed by a label.

Chapter 3: Language 10

A completer is the combination of an exit followed by a label.

exit
label:

The units preceding a completer in a serial clause are mode-units, i.e. expressions. In con-
trast, other units in the serial clause but the last one are void-units, also known as statements.

Note that enquiry clauses are not allowed to contain labels, and therefore they can’t contain
completers. This is to prevent code in if-parts, else-parts and do-parts to jump back to the
enquiry clause of their enclosed clause.

See Also

• Section 3.16 [Go-On Symbol], page 18,

• [II 3.1.4]

3.5 Contraction

Meaning

Certain language constructions which can be cumbersome for the programmer to write can be
“contracted” into equivalent forms. The resulting shorter form is called a contraction. The
constructions that can be contracted are:

• Collateral variable declarations.

• Collateral identity declarations (constant declarations).

• Identity declarations of routine modes.

• Priority declarations.

See for example the following collateral declaration of several variables of the same name,
followed by it’s corresponding contraction:

int size, int offset, int value := 1024;

int size, offset, value := 1024;

In the contracted form above, the same actual declarer (int) is shared among all the declared
variables. The elaboration is still collateral, as implied by the comma separator.

The same can be applied to identity declarations. If we turn the variables above into con-
stants, we have:

int size = 0, int offset = 0, int value = 1024;

int size = 0, offset = 0, value = 1024;

Note that you cannot mix variable declarations and constant declarations in the same con-
traction. If you tried to do:

int alignment = 1, int value := 1024;

int alignment = 1, value := 1024; # BAD #

The first collateral declaration is perfectly valid, but the resulting contraction is not. The reason
is that in the variable declaration for value the mode at the left is an actual declarer that
generates a new name to hold the value, whereas the mode at the left in the identity declaration
for alignment is a formal declarer. This becomes more clear if we explicit the generator in the
variable declaration:

int alignment = 1, loc int value := 1024;

int alignment = 1, value := 1024; # BAD #

Identity declarations of routines can become clunky:

proc([]real,real)real waverage = ([]real numbers, real weight) real:
begin

Chapter 3: Language 11

...

end

The corresponding contracted form, where the actual declarer is shortened to proc, would be:

proc waverage = ([]real numbers, real weight) real:
begin
...

end

Note however that the contraction form of a routine declaration is less expressive than the
uncontracted form. In the contracted form it is required for the right hand side to be a routine
text. That is not the case in the uncontracted form, in which the right hand side can be any
unit yielding a routine of the expected mode, like in:

proc(int,int) transformer = (op = add

| int(int a, int b)int: a + b

| int(int a, int b)int: a * b);

Finally, collateral declarations of the priority of operators can also be contracted in the
expected way:

prio isoneof = 6, prio ismanyof = 6;

prio isoneof = 6, ismanyof = 6;

Syntax

Simplified [RR 4.1.1.b:c]:

b) COMMON joined definition of PROPS:

COMMON joined definition of PROPS, and also token, joined definition of PROP.

c) COMMON joined definition of PROP:

COMMON definition of PROP.

Note that and also token is the comma symbol in most representations.

The rules above are used in the syntax of all the constructs mentioned in this article. For
example the following simplified rule [RR 4.3.1.a] implements priority declarations:

a) priority declaration of DECS:

priority token, priority joined definition of DECS.

Where priority plays the role of COMMON and DECS of PROPS. The rules for the other construc-
tions are built the same way, so we are not including them here.

See Also

• [II 1.1.3,2.1.2,4.2.2.1]

• [RR 4.1.1.b:c]

3.6 Declarer

Meaning

A declarer is a source construct that specifies some particular mode. The simplest form of a
declarer is the name of a mode, which can be one of the predefined primitive modes such as int,
real or compl, or a mode indication previously defined by the programmer, such as tree node.
Declarers can get arbitrarily complicated depending the mode they specify. For example, the
declarer corresponding to a ref to a row of structs is ref[]struct (int age, string name).

Declarers specify modes, but they are not the same than modes. Different declarers can
specify the same mode. This is the case for example with union(int,real) and union(real,int),
which specify the same united mode (unions are commutative and associative in Algol 68). Also,

Chapter 3: Language 12

declarers can convey information that is not properly part of the mode it specifies. An example
is [10:20]int, which denotes the mode row of integers but that also specify bounds which are
not part of the mode. This is an example of actual declarer, that provides bounds to be used
by a sample generator.

There are three kind of declarers, depending on the context where they appear and whether
they convey bounds information or not: formal declarers, actual declarers and virtual declarers.

See Also

• Section 3.13 [Formal Declarer], page 15,

• Actual Declarer

• Virtual Declarer

• Mode

• [RR 4.6]

3.7 Development

Meaning

Development is the process of replacing a mode indication by its actual declarer. For example,
given the following mode declaration:

mode tree node = struct (int payload, ref tree node left, right);

In the example below, which denotes a variable declaration, the occurrence of the mode indica-
tion tree node is developed into the full structure mode definition:

tree node top = (0, nil);

Which is then equivalent to:

struct (int payload, ref tree node left, right) top = (0, nil);

The term “development” is not to be confused with “elaboration”. The first applies to modes,
the second to phrases and clauses. The first happens at compile-time, the second at run-time.
It doesn’t make sense to elaborate a mode, nor to develop a formula for example.

Usage

• “The mode node develops into a structure”

See Also

• [II 1.3.3.1]

3.8 Enquiry Clause

Meaning

An enquiry clause is a serial clause in a meek context that doesn’t immediately contain labels,
and therefore nor completers. Serial clauses that appear in the enquiry clause can feature labels
and completers on their own.

Enquiry clauses (or just “enquiries”) can be found in the following constructions:

− In conditional clauses, the if-part is an enquiry clause that must yield an int.

− In case clauses, the in-part is an enquiry clause that must yield an int.

− In loop clauses, if present, the while-part is an enquiry clause that must yield a bool.

− In conformity clauses, the case-part’ is an enquiry clause that must yield an union.

Chapter 3: Language 13

Early drafts of the language used regular serial clauses in these contexts, which led to an
unexpected problem. Consider the following conditional clause:

if int i := x + 10; xxx: i = 0

then ...

else ... i := 0; go to xxx ...

fi

In conditional clauses the if-part introduces a range that is visible in the rest of the clause. In
the example above, if x is not zero when the clause is elaborated the else part gets elaborated
and jumps back to the if-part. Similar situations happen in case, loop and conformity clauses.
To avoid these difficulties, enquiry clauses got introduced with the restrictions explained above.

See Also

• Conditional Clause

• Loop Clause

• Enquiry Clause

• Conformity Clause

• [II 3.2.4.2]

• [II 3.2.4.3]

• [II 3.5.2]

• [II 3.6]

3.9 Environment Enquiry

Meaning

An environment enquiry is a kind of procedure defined in the standard prelude whose purpose
is to provide information about the properties of the particular implementation used to compile
the program.

Procedures implementing environment enquiries do not take any argument and yield a value
of some appropriate mode. For example, the max int environment enquiry yields a value of
mode int, whereas null character yields a value of mode char.

The section 10.2.1 of the Revised Report defines the environment enquiries that a conforming
implementation must provide. These are:

int int lenghts

1 plus the number of extra lenghts of integers. This determines how many long
entries in a longsety preceding int are meaningful in the implementation.

int int shorts

1 plus the number of extra shorts of integers. This determines how many short
entries in a shorsety preceding int are meaningful in the implementation.

sizety int sizety max int

The largest sizety integral value.

int real lengths

1 plus the number of extra lenghts of real numbers. This determines how many long
entries in a longsety preceding real are meaningful in the implementation.

int real shorts

1 plus the number of extra shorts of real numbers. This determines how many short
entries preceding real in a shortsety are meaningful in the implementation.

Chapter 3: Language 14

sizety real sizety max real

The largest sizety real value.

sizety real sizety small real

The smallest sizety real value such that both sizety 1 + sizety small real > sizety
1 and sizety 1 - sizety small real < sizety 1.

int bit lengths

1 plus the number of extra longs of bits. This determines how many long entries in
a longsety preceding bits are meaningful in the implementation.

bin bit shorts

1 plus the number of extra shorts of bits. This determines how many short entries
in a shortsety preceding bits are meaningful in the implementation.

int sizety bits width

The number of elements in a value of mode sizety bits.

int bytes lenghts

1 plus the number of extra longs of bytes. This determines how many long entries
in a longsety preceding bytes are meaningful in the implementation.

int bytes shorts

1 plus the number of extra shorts of bytes. This determines how many short entries
in a shortsety preceding bytes are meaningful in the implementation.

int sizety bytes width

The number of elements in a value of mode sizety bytes.

op abs = (char a) int
The integral equivalent of the character a.

op repr = (int a) char
That character x, if it exists, for hich abs x = a.

int max abs char

The largest integral equivalent of a character.

char null character

Some character.

char flip The character used to represent true during transput.

char flop The character used to represent false during transput.

char errorchar
The character used to represent unconvertible arithmetic values.

char blank
The blank character.

See Also

• [RR 10.2.1]

• Section 3.12 [Flip and Flop], page 15,

3.10 Expression

See Also

• Section 3.22 [Mode-Unit], page 22,

Chapter 3: Language 15

3.11 Field Selector

Meaning

Structure modes consist on one or more fields, each of which have a mode on their own and a
name. For example, this is how we would declare a mode for a node in a linked list:

node = struct (int id, real weight, ref node next);

The names of the fields in the structure, id, weight and next, are known as field selectors of
the structure mode. Field selectors look like identifiers and are formed using the same rules, but
they are not identifiers: they cannot be used on their own, and can only appear in a program
text as part of a selection, like in next of node.

Note that the field selectors are integral part of the structure mode. The two structure modes
struct (int a, int b) and struct (int x, int y) are different modes, since the field selectors of
their fields are different. All the fields in a structure mode must feature a field selector: there is
no provision in the language for “anonymous” fields.

Syntax

Simplified [RR 4.6.1.d]:

d) structured with FIELDS mode declarator:

structure token, FIELDS portrayer of FIELDS brief pack.

Simplified [RR 1.2.1.I:J]:

I) FIELDS :: FIELD ; FIELDS FIELD.

J) FIELD :: MODE field TAG.

Note that TAG is the metanotion that produces identifier tokens.

See Also

• [II 2.4.1]

• [RR 4.6.1.d,1.2.1.I:J]

3.12 Flip and Flop

Meaning

During transput, the boolean values true and false are represented by two characters known as
flip and flop respectively. The particular characters used for flip and flop are provided by two
enviroment enquiries. Most implementation have used the character T for flip and F for flop.

See Also

• [RR 10.2.1]

• Section 3.9 [Environment Enquiry], page 13,

3.13 Formal Declarer

Meaning

A formal declarer specifies the mode of the value being ascribed in an identity declaration.
It appears on the left hand side of an identity declaration, before the defining identifier. For
example, in the following identity declaration the formal declarer is the mode indication real:

real pi = 3.141592;

Chapter 3: Language 16

Formal declarers also appear in routine texts as the modes of formal parameters, which
shouldn’t be surprising, since the mechanism of associating formal parameters with actual pa-
rameters in a routine call is the identity declaration: during a function call the internal values
provided in the call get ascribed to the formal parameters. For example, in the following routine
the mode indications ref tree and []int are formal declarers:

proc set tree weights = (ref tree node, []int weights) void:
begin
...

end

The mode specified in a cast is also a formal declarer. In the following example, where a cast
is used in the firm context of an operator, the formal declarer is real:

c := real (2) * pi * r;

Note that (unlike actual declarers) formal declarers of row modes do not include bounds. If
bounds are provided they are ignored, although some implementation may offer checking the
bounds at run-time as a security measure. This could be particularly useful in formal parameters,
where the run-time check would make sure multiples of the expected bounds get passed to the
routine.

Syntax

Simplified [RR 4.4.1.c] (formal declarer in identity declaration):

A) MODINE :: MODE ; routine.

c) identity definition of MODE TAG:

MODE defining identifier with TAG, is defined as token,

source for MODINE.

Simplified [RR 4.6.1.r] (formal declarer in formal parameter):

r) MODE parameter joined declarer:

formal MODE declarer.

Simplified [RR 5.5.1.a] (formal declarer in cast):

a) MOID cast:

formal MOID declarer, strong MOID ENCLOSED clause.

In 4.4.1.c the formal declarer is the MODE before the defining identifier.

Note that is defined as token is the equal sign character in the standard representation.

See Also

• [II 2.2.1]

• [RR 4.4.1.c,4.6.1.r,5.5.1.a]

3.14 Formal Parameter

Meaning

A formal parameter is the left hand side of an identity declaration, and consists of a formal de-
clarer, which indicates the mode of the internal object being ascribed in the identity declaration,
followed by a defining identifier to which the value will be ascribed. In the identity declaration:

real ratio = 2.71828;

The formal parameter is real ratio, the formal declarer is the mode indication real and the
defining identifier is ratio.

Chapter 3: Language 17

Formal parameters also appear in routine texts, where they define which values are accepted
as parameters by the routine when it is called. This highlights that in Algol 68 the mechanism
of associating formal parameters with actual parameters is the identity declaration: during a
function call the internal values provided in the call get ascribed to the formal parameters. For
example, in the following routine:

proc multiply vectors = (vector a, vector b) vector:
begin
...

end

The formal parameters are vector a and vector b.

Note that formal parameters may appear “distributed” in the case of contracted definitions.
In the following example:

real x, y, z;

There are three formal parameters, which are real x, real y and real z.

Syntax

Simplified [RR 4.4.1.a:c]

A) MODINE :: MODE ; routine.

a) MODINE identity declaration of DECS:

formal MODINE declarer, identity joined definition of DECS.

b) routine declarer: procedure token.

c) identity definition of MODE TAG:

MODE defining identifier with TAG, is defined as token, MODE source for MODINE.

Note that is defined as token is the equal sign character in the standard representation.

See Also

• See Section 3.13 [Formal Declarer], page 15,

• [II 2.2.1]

• [RR 4.4.1.a:c]

3.15 Frobyt

Meaning

A Frobyt or FROBYT is a for-, from-, by- or to-part of a loop clause. Loops featuring frobyts are
endowed with an iterator, which may be explicit or explicit, and they will never run indefinitely.

The following loop clause has frobyts for and to, and has an explicit iterator i. It iterates
100 times:

for i to 100

do ... od

The following loop clause has frobyts for and while, and has an explicit iterator i used to
determine whether we are in the first iteration. Since the loop is endowed with an iterator and
it doesn’t feature a to-part, it will iterate at most max_int times, at which point the iterator
would overflow:

for i while node :/=: no node

do print ((name of node));

Chapter 3: Language 18

if i > 0 then print ((",")) fi;
node := next of node

od

The following loop is endowed by an interator, this time implicit, due to the presence of the
frobyt to:

to 1000 while node :/=: no node

do c process node c od

If the by-part of a loop clause is negative, then the to-part defaults to min_int.

3.16 Go-On Symbol

Meaning

The go-on symbol separates the phrases (declarations and units) in serial clauses. The concrete
syntax for the go-on symbol is almost always the semicolon character ;.

Consider for example the following closed clause, that consists on a serial clause with a
declaration, a statement (voided assignation) and a final expression that determines the value
of the serial clause:

(int t := x; x := y; t)

In Algol 68 the go-on symbol always implies serial elaboration. In the example above, the
declaration is elaborated first, then the assignation and finally the final expression.

Strictly speaking, it is not legal to put extra go-on symbols after the sequence of phrases:
unlike in ALGOL 60, Algol 68 doesn’t support the notion of “empty statement” (skip is used
for that purpose instead) so the following code is invalid:

begin foo;

bar;

baz;

end

However, some implementations are lenient and just emit a warning about the superfluous go-on
symbol. That is the case of both GNU Algol 68 and Algol68 Genie.

Syntax

Simplified [RR 3.2.1.b]:

b) SOID series:

strong void unit, go on token, SOID series;

declaration of DECS, go on token, SOID series LABSETY;

label definition of LAB, series with LABSETY;

completion token, label definition of LAB, series with LABSETY;

SOID unit.

See Also

• [RR 3.2.1.b]

3.17 Incestuous Union

Meaning

An incestuous union is an union that contains two or more alternatives whose modes are firmly
related. Two modes M1 and M2 are firmly related if it would be possible to coerce a value of
mode M1 to a value of mode M2 in a firm context, or to vice versa.

Chapter 3: Language 19

Consider the following union mode definition:

mode datum = union (int,ref int,proc int);

This union is incestuous, as both ref int and proc int values can be coerced to int in a firm
context, by dereferencing and deproceduring respectively. If allowed in the language, this would
lead to an ambiguity. After the assignation in the following example, the value stored in the
union variable mydatum may either an int or a ref int:

int var;

datum mydatum := var;

To avoid these ambiguities incestuous unions are not allowed by the language and should be
reported in compile-time errors by Algol 68 compilers.

Syntax

[RR 4.7.1.a]:

f) WHETHER MOODSETY1 with MOODSETY2 incestuous:

where (MOODSETY2) is (MOOD MOODSETY3),

WHETHER MOODSETY1 MOOD with MOODSETY3 incestuous

or MOOD is firm union of MOODSETY1 MOODSETY3 mode;

See Also

• [RR 4.7.1.f]

• Firmly Related

3.18 Indicator

Meaning

An indicator is either an identifier, a mode indication or an operator. In all cases it specifies or
denotes some other entity: identifiers specify the internal objects ascribed to them in identity
declarations, mode indications specify modes associated to them in mode declarations, and
operators specify routines ascribed to them in operation declarations.

The indicator in the following identity declaration is pi:

real pi = 3.14;

The indicator in the following mode declaration is tree node:

mode tree node = struct (int payload, ref tree node next);

The indicator in the following operation declaration is +:

op + = (tree node n1, tree node n2) tree node: ...;

Syntax

[RR 4.8.1.A,G]:

A) INDICATOR :: identifier ; mode indication ; operator.

G) TAX :: TAG ; TAB ; TAD ; TAM.

See Also

• Section 3.21 [Mode Indication], page 21,

• [II 1.1.1]

• [RR 4.8.1.A]

Chapter 3: Language 20

3.19 Longsety

Meaning

A longsety is a sequence of zero or more long bold tags. The term follows the fashion of the
Revised Report, where the suffix -ety means “or empty”.

The Algol 68 modes int, real, compl, bits and bytes can be prefixed with any number of long
tag words. The effect of each long is to double the precision of the mode.

At some point, however, a “saturation” point is reached where the addition of extra long has
no further effect on the mode. Where that point resides is up to the particular implementation.

For example, if the precision of int is four bytes or 32-bit, the precision of long int is 64-bit,
and the precision of long long int is 128-bit.

A longsety can also be used in an integral denotation in order to specify the mode of the
denotation. For example in the formula:

long 20 + long 30

The denotations long 20 and long 30 are of mode long int, which determines its precision. The
reason why it is important to specify the mode in the denotations is that in Algol 68 it is not
legal to widen to a mode having a different precision, so the following identity declaration is not
legal:

long long int number = 100; # BAD #

This is because the mode of the denotation 100 is int whereas the expected mode is long long
int. This can be achieved by a longsety in the denotation:

long long int number = long long 100;

Note that some Algol 68 implementations allow to widen to modes having a different precision.

Syntax

Simplified [RR 1.2.1.E]:

E) LONGSETY :: long LONGSETY ; EMPTY.

See Also

• Section 3.24 [Shortsety], page 23,

• Section 3.25 [Sizety], page 23,

• [II 2.7.2]

• [RR 1.2.1E]

3.20 Monads and Nomads

Meaning

Algol68 operators, be them predefined or defined by the programmer, can be referred via either
bold tags or sequences of certain non-alphabetic symbols. For example, the dyadic operator + is
defined for many modes to perform addition, the monadic operator entier gets a real value and
rounds it to an integral value, and the operator :=: is the identity relation. Many operators
provide both bold tag names and symbols names, like in the case of :/=: that can also be written
as isnt.

Bold tags are lexically well delimited, and if the same tag is used to refer to a monadic
operator and to a dyadic operator, no ambiguity can arise. For example in the code:

op plus = (int a, b) int: a + b,

plus = (int a): a;

Chapter 3: Language 21

int val = 2 plus plus 3;

It is clear that the second instance of plus refers to the monadic operator and the first instance
refers to the dyadic operator. If one would write plusplus, it would be a third different bold tag.

However, symbols are not lexically delimited as words, and one symbol can appear immedi-
ately following another symbol. This can lead to ambiguities. For example, if we were to define
a C-like monadic operator ++ like:

op ++ = (ref int a) int: (int t = a; a +:=1; t);

Then the expression ++a would be ambiguous: is it ++a or +(+a)?. In a similar way, if we would
use ++ as the name of a dyadic operator, an expression like a++b could be also interpreted as
both a++b and a+(+b).

To avoid these problems Algol 68 divides the symbols which are suitable to appear in the
name of an operator into two classes: monads and nomads. Monads are symbols that can be
used as monadic operators. Nomads are symbols which can be used as both monadic or dyadic
operators.

The Revised Report defines the sets of monads and nomads as metanotions, referring to
symbols in an abstract way using symbolical names like “is at most” or “plus i times”. These
symbols do not always have a clear correspondence in click-able and printable symbols in all
computers, so different implementations provide slightly different sets of monads and nomads.
For example, in both GNU Algol 68 and Algol 68 Genie the set of monads is %^&+-~!? and the
set of nomads is ></=*.

Now that we know about monads and nomads, we can give the precise rules to conform valid
operator names in Algol 68:

− A bold tag.

− Any monad.

− A monad followed by a nomad.

− A monad optionally followed by a nomad followed by either := or =:, but not by both.

Syntax

Simplified [RR 9.4.2.I,H] defines monads and nomads as metanotions:

H) MONAD :: or; and; ampersand; differs from; is at most; is at least;

over; percent; indow; floor; ceiling;

plus i times; not; tilde; down; up;

plus; minus; style TALLY monad.

I) NOMAD :: is less than; is greater than; divided by;

equals; times; asterisk.

See Also

• [RR 9.4.2.I,H]

3.21 Mode Indication

Meaning

A mode indication is a bold word, an external object, that specifies a mode. Examples are int
and complex. It is possible to introduce new mode indications via mode declarations. A mode
indication is interchangeable with the mode it denotes within its range, which spans until the end
of the current block. For example, the following mode declaration declares a mode indication
tuple, which is visible until the end of the closed clause:

begin

Chapter 3: Language 22

mode tuple = [2];

...

end

Mode indications are very often abbreviated and referred to as “MOIDs” or “moids”.

Syntax

Simplified [RR 4.8.1.A,a]:

A) INDICATOR :: identifier ; mode indication ; operator.

G) TAX :: TAG ; TAB ; TAD ; TAM.

a) QUALITY new defining INDICATOR with TAX:

TAX token.

Note that TAB is the meta-notion for a bold tag.

See Also

• [II 2.3]

• [RR 4.8.1.A,a]

3.22 Mode-Unit

See Also

• Section 3.36 [Void-Unit], page 30,

3.23 Ravelling

Meaning

Algol 68 unions are both commutative and associative. The associativity implies that, for
example, given the declaration:

mode u1 = union (int,real);

Then writing union (u1,string) results in the mode union (int,real,string). This associativity,
which is conceptually clear, is syntactically implemented by an operation known as ravelling
and consists in that, given a set of modes, some of them united, the united modes in the set are
replaced by their components.

Syntax

Simplified [RR 4.7.1] is a predicate that determines whether a given set of moids ravels to a set
of moods:

g) WHETHER MOIDS ravels to MOODS:

where (MOIDS) is (MOODS), WHETHER true ;

where (MOIDS) is

(MOODSETY union of MOODS1 mode MOIDSETY),

WHERE MOODSETY MOODS1 MOIDSETY ravels to MOODS.

See Also

• [RR 4.7.1]

Chapter 3: Language 23

3.24 Shortsety

Meaning

A shortsety is a sequence of one or more short bold tags. The term follows the fashion of the
Revised Report, where the suffix -ety means “or empty”.

The Algol 68 modes int, real, compl, bits and bytes can be prefixed with any number of short
tag words. The effect of each short is to half the precision of the mode.

At some point, however, a “saturation” point is reached where the addition of extra short has
no further effect on the mode. Where that point resides is up to the particular implementation.

For example, if the precision of int is four bytes or 32-bit, the precision of short int is 16-bit,
and the precision of short short int is 8-bit.

A shortsety can also be used in an integral denotation in order to specify the mode of the
denotation. For example in the formula:

short 20 + short 30

The denotations short 20 and short 30 are of mode short int, which determines its precision.
The reason why it is important to specify the mode in the denotations is that in Algol 68 it is
not legal to widen to a mode having a different precision, so the following identity declaration
is not legal:

short short int number = 10; # BAD #

This is because the mode of the denotation 100 is int whereas the expected mode is short short
int. This can be achieved by a shortsety in the denotation:

short short int number = short short 10;

Note that some Algol 68 implementations allow to widen to modes having a different precision.

Syntax

Simplified [RR 1.2.1.F]:

F) SHORTSETY :: short SHORTSETY ; EMPTY.

See Also

• Section 3.19 [Longsety], page 20,

• Section 3.25 [Sizety], page 23,

• [II 2.7.2] [RR 1.2.1.F]

3.25 Sizety

Meaning

A sizety is either a longsety or a shortsety. The term follows the fashion of the Revised Report,
where the suffix -ety means “or empty”.

For example, the sizety of a mode declared as long long bits is long long.

Usage

This term is useful in order to inquiry the number of size modifiers some particular mode has,
like in:

• “What is the sizety of file size?”

• “The sizety was wrong, I changed it to long long.”

Note that this is not exactly the same than asking for the precision of FILE SIZE. The sizety
implies some particular precision, but only indirectly.

Chapter 3: Language 24

Syntax

Simplified [RR 1.2.1.F]:

SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY.

See Also

• Section 3.19 [Longsety], page 20,

• Section 3.24 [Shortsety], page 23,

• [II 2.7.2] [RR 1.2.1.F]

3.26 Statement

See Also

• Section 3.36 [Void-Unit], page 30,

3.27 Specification Part

Meaning

Each alternative in a conformity clause is composed by a specification part, which determines
whether the alternative is chosen, followed by a unit that yields the value to which the clause
elaborates in case the alternative is chosen. Each specification part contains a formal declarer
followed by an optional defining identifier.

Consider for example the following conformity clause:

case datum

in (int i): i + 10,

(real r): entier r + 10,

(void): 0

esac

The first alternative has a specification part (int i):. It specifies that the alternative is chosen in
case the enquiry clause datum is an int, and ascribes that value to the identifier r (which becomes
a defining identifier) in the following unit. The second alternative has a similar specification
part (real r). The specification part of the third and last alternative, (void), doesn’t have an
identifier.

Syntax

Simplified [RR 3.4.1.j,k]:

j) MODE specification defining new MODE TAG:

declarative defining new MODE TAG brief pack, colon token.

k) MOID specification defining new EMPTY:

formal MOID declarer brief pack, colon token.

See Also

• Conformity Clause

• Section 3.13 [Formal Declarer], page 15,

• [II 3.6]

• [RR 3.4.1.j,k]

Chapter 3: Language 25

3.28 String Break

Meaning

The intrinsic value of each worthy character that appears inside a string denotation is itself.
The string "/abc", for example, contains a slash character followed by the three letters a, b and
c. A string break is a sequence of worthy characters that can occur inside a string or character
denotation, that denotes some particular character.

String break sequences start with a break character. The Algol 68 Standard Hardware
Representation allows implementations to define their own set of string breaks, but insists that
the apostrophe should be the escape character. An example would be ’/ to denote a newline
character, for example. The GNU Algol 68 compiler deviates from this and uses the backslash
character to start string breaks emulating the familiar escape sequences used in C-like languages.

See Also

• [SHR 3.1]

3.29 Structure Display

Meaning

When a collateral clause is in a strong context where a primary yielding a structure value is
expected, its constituent units are elaborated collaterally as usual, and the resulting values are
used to conform the value of the fields of a new structure value of the expected mode. These
collateral clauses are called structure displays, and play the role of structure denotations in Algol
68, even though they are not truly denotations.

The constituent units of a structure display are known as the field positions of the structure
display. They are always elaborated in strong context with the mode of the corresponding
structure mode field expected. The units are elaborated collaterally.

Consider the following structured mode with a couple of real fields and the declaration of a
constant of that mode:

mode vector = (real x, y);

vector v1 = (3.14, 10)

The right hand side of an identity declaration is a strong context, and therefore the required
mode is known at compile-time. In this case the mode expected is vector. The collateral
clause (3.14, 10) can then recognized as a structure display of that particular mode, and its
constituent units 3.14 and 10 become strong field positions with expected mode real. This
allows the widening of 10 to 10.0 in this case.

When the context is not strong, however, structure displays cannot be recognized as such.
Consider the following operator that adds two vectors:

op + = (vector a, b) vector:
(x of a + x of b, y of a + y of b)

Again, the structure display in the body of the routine text ascribed to the operator + is in a
strong context expecting a vector, so no problem there. But then consider the following formula
that uses the just defined operator:

(1, 2) + (3, 4)

That is not valid code and a compiler will complain. The operands of a formula are in firm
context, and the collateral clauses are recognized as such, which are void units. To remedy this
we are forced to use casts in order to surround the collateral clauses with a strong context with
required mode vector:

vector (1, 2) + vector (3, 4)

Chapter 3: Language 26

Note that structure displays must have two or more field positions, or certain syntactic
ambiguity known as Yoneda’s ambiguity would arise: given mode = m (ref m m); m nobuo,

yoneda; the assignation nobuo := (yoneda) is ambiguous. This difficulty can be easily circum-
vented by using the non-ambiguous m of nobuo := yoneda.

Syntax

Simplified [RR 3.3.1.e:h]:

FIELD :: MODE field TAG.

e) strong structured with FIELDS FIELD mode collateral clause:

FIELDS FIELD portrait.

f) FIELDS FIELD portrait:

FIELDS portrait, and also token, FIELD portrait.

g) MODE field TAG portrait:

strong MODE unit;

h) *structure display:

strong structured with FIELDS FIELD mode collateral clause.

Note that and also token is the comma symbol in most representations.

Note how the structure mode in e has at least two fields.

See Also

• [II 3.4]

• [RR 3.3.1.e:h]

3.30 Subname

Meaning

Selecting a name of a structure value results in another name, which is known as a sub-name.
For example, given the following structure mode:

mode node = struct (int data, ref int next);

And a name of a value of mode node:

node anode := (0, nil);

Then selecting the field data of the structure name yields a sub-name with mode ref int:

data of anode := 100;

print ((data of anode))

It is said that the mode ref node is “endowed with sub-names”.

See Also

• [II 1.4.1.2]

3.31 Subscript

Meaning

A subscript is used to refer to some particular entry in a multiple’s dimension while slicing. For
example, in the slice:

foo[1,2,3]

The subscript 1 refers to the entry in the first dimension of the multiple with index 1. This
doesn’t necessarily means the first element: it depends on the bounds of the dimension. Likewise,

Chapter 3: Language 27

the subscripts 2 and 3 refer to the values with indexes 2 and 3 in the second and third dimensions
of the multiple. The action of applying a subscript is known as subscripting.

When subscripts are provided for all the dimensions of a multiple the result of the slice is an
element from the multiple.

Syntax

Simplified [RR 5.3.2.e]:

e) subscript : meek integral unit.

See Also

• [II 1.5.2]

• [RR 5.3.2.e]

3.32 Symbol

See Also

• Section 3.33 [Token], page 27,

3.33 Token

Meaning

In most programming languages the tokens are the fundamental entities manipulated by the
syntactic parser, and constitute the leaves of parse trees. A compiler component known as the
lexical analyzer, or lexer, scans the source file and provides a flow of tokens. Typical tokens in
these languages are strings, numerical literals and syntactic delimiters. For example:

foo (100)

|

+-----------+-----------+

| |

identifier +-------+------+

| | |

(100)

Where the terminal production would be the tokens identifier, (, 100 and).

In Algol 68, on the other hand, the grammar extends all the way down to the individual
letters, digits and symbols of a particular program: there is not a “lexical” specification sepa-
rated from the “syntactic” specification. Therefore the individual digits of integral denotations,
comments and its contents, string denotations and their contents etc, are all included in the
grammar and are part of the parse tree. What is known as a token in other programming lan-
guages translates into the concept of symbol in Algol 68. The example above would be parsed
in Algol 68 to something similar to:

foo (100)

|

+-----------------+------------------+

| |

tag +----------------+----------------+

| | | |

+--------+-------+ open-symbol denotation close-symbol

| | | |

f-symbol o-symbol o-symbol +------------+------------+

Chapter 3: Language 28

| | |

1-symbol 0-symbol 0-symbol

Where the terminal production would be the symbols f-symbol, o-symbol, o-symbol,
open-symbol, 1-symbol, 0-symbol, 0-symbol, close-symbol.

In conventional languages comments are considered a purely lexical artifact, meaning they
get not tokenized, but simply skipper over and ignored by the lexer. Comments therefore
never appear as tokens in the syntax of these programming languages, and can appear virtually
anywhere in the program source without impacting the resulting parse tree.

On the other hand, Algol 68 accommodates comments (and the very similar pragmats) by
defining a token as a syntactic construct composed by an optional comment (or pragmat) followed
by a symbol. Note that this doesn’t mean any symbol can be preceded by a comment or a
pragmat. Comments and pragments can therefore appear anywhere the grammar generates a
sequence of symbols via a sequence of tokens, but not where the grammar generates a sequence
of symbols directly, such as in string denotations or inside other comments and pragments.

Syntax

The tokens are realized in the syntax by the following meta-production rule in [RR 9.1.1]:

f) NOTION token :

pragment sequence option, NOTION symbol.

g) *token : NOTION token.

h) *symbol : NOTION symbol.

See Also

• Section 3.32 [Symbol], page 27,

• Section 3.3 [Comment], page 9,

• Pragmat

• [RR 9.1.1]

3.34 Trimmer

Meaning

A trimmer is used to refer to a subset of values in a multiple’s dimension while slicing. For
example, in the slice:slice

foo[1:5]

The trimmer 1:5 refers to the values with index 1 to 5 in the only dimension of the multiple
foo. The action of applying a trimmer is known as trimming, and it always yields a slice.

The multiple resulting from the slice above will have lower bound 1 an upper bound 5, but
it is possible to “rebound” the result of trimming by using revised bounds. Consider:

[]int foo = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

[]int trim1 = foo[6:10];

[]int trim2 = foo[6:10 at 1];

[]int trim3 = foo[6:10 @ 1];

Where trim1 has lower bound 6 and upper bound 10, and both trim2 and trim3 have lower
bound 1 and upper bound 5. All trim1, trim2 and trim3 contain values 6, 7, 8, 9, 10. Note
that at and @ are alternative representations of the “at token”.

All components of a trimmer are optional. If the lower bound of the trimmer is omitted (as
in [:5]) then it defaults to the lower bound of the multiple’s dimension. If the upper bound
of the trimmer is omitted (as in [1:]) then it defaults to the upper bound of the multiple’s

Chapter 3: Language 29

dimension. Both bounds can be omitted, resulting in : or simply an empty string, such as in the
slice foo[2,]. If the lower bound revision part is omitted, the bounds of the resulting multiple
are the same than the bounds specified in the trimmer (or implied by the trimmer.)

Syntax

Simplified [RR 5.3.2.f,g]:

f) trimmer : lower bound option, up to token, upper bound option,

revised lower bound option.

g) revised lower bound : at token, lower bound.

See Also

• [II 1.5.2]

• [RR 5.3.2.f,g]

3.35 Vacuum

Meaning

Row displays contain zero, two or more constituent units. A row display that contains no units
is known as a vacuum. The vacuum yields an empty multiple when evaluated, with whatever
number of dimensions required by the appropriate row mode. Each dimension has a lower bound
of one and an upper bound of zero.

The following example shows an identity declaration that ascribes a multiple that contains
no elements to the identifier empty:

[]int empty = ();

The empty collateral clause () is in a strong context where a multiple of mode []int is
required, and therefore constitutes a row display. The following holds for the created multiple:

assert (lwb empty = 1);

assert (upb empty = 0);

assert (elems empty = 0);

The following example shows a similar identity declaration, but this time the row mode has
three dimensions:

[,,]int empty cube = ();

Note how the vacuum is sill a single empty row display, i.e. it is not written ((())). All
dimensions of the multiple have the same bounds:

assert (1 lwb empty = 1);

assert (1 upb empty = 0);

assert (1 elems empty = 0);

assert (2 lwb empty = 1);

assert (2 upb empty = 0);

assert (2 elems empty = 0);

assert (3 lwb empty = 1);

assert (3 upb empty = 0);

assert (3 elems empty = 0);

Syntax

[RR 3.3.1.k]:

k) *vacuum : EMPTY PACK.

Chapter 3: Language 30

See Also

• Row Display

• [II 3.5.1]

• [RR 3.3.1.k]

3.36 Void-Unit

Meaning

A serial clause contains one or more units. Of these, the units preceding a completer and the
unit appearing last in the clause yield a value which in turn will be the value yielded by the
complete serial clause.

Consider the following example:

begin
int tmp := a;

a := b;

if tmp = 0 then divbyzero fi;
a / temp exit

divbyzero:

0

end

This particular serial clause contains one declaration, one label and four units.

The units a / tmp, which appears right before a completer, and and 0, which is the unit
appearing last in the serial clause, yield an integral value which is the result of the serial clause.
These are called int-units or, more generally, mode-units. These are also known as expres-
sions.

On the other hand the units a := b and if tmp = 0 then divbyzero fi also yield values. For
example, the assignation yields a of mode ref int. However, the value yielded by these units gets
voided and discarded. These are void-units, also known as statements.

Syntax

Simplified [RR 3.2.1.b]:

b) SOID series with PROPSETY:

strong void unit, go on token, SOID series with PROPSETY ;

where (PROPSETY) is (DECS DECSETY LABSETY),

declaration of DECS, go on token,

SOID series with DECSETY LABSETY ;

where (PROPSETY) is (LAB LABSETY),

label definition of LAB,

SOID series with LABSETY ;

where (PROPSETY) is (LAB LABSETY) and SOID balances SOID1 and SOID2,

SOID1 unit, completion token, label definition of LAB,

SOID2 series with LABSETY ;

where (PROPSETY) is (EMPTY),

SOID unit.

In the hyper-rule above the first alternative matches a void-unit. Note that the unit is in a
strong context with goal mode void, and therefore is subject to voiding.

See Also

• Section 3.26 [Statement], page 24,

Chapter 3: Language 31

• Section 3.4 [Completer], page 9,

3.37 Well-Formedness

Meaning

As is usual in modern programming languages Algol 68 supports an infinity of user defined
modes, which are derived from the primitive modes1. There are two ways a programmer could
shoot herself in the foot while defining modes:

• Values of the specified mode may require infinite memory.

• The mode may introduce ambiguities if values of that mode may be strongly coerced into
themselves.

The first problem arises in modes that somehow include themselves. This can happen both
directly, when a structure mode has a field of its own mode, or indirectly like in the following
example:

mode thunk = struct (int content, thunk extra extra);

mode thunk extra = struct (char ext code, thunk extra thunk);

The second problem is more difficult to find in practice. The following rather artificial
example is taken from II:

mode itself = ref itself;
ref itself who = loc itself;

If some particular mode is free of these problems, it is said that the mode is well formed.

Note how the root cause of non-well formed modes is in all cases some sort of recursion.
Structural recursion can be avoided by what is known as shielding : a ref or a proc “shields” the
referred or procedured mode that follows from causing recursion. For example, the following
mode is well formed and actually quite useful:

mode tree node = struct (int data, ref tree node left, right);

The well-formedness of modes can always be detected at compile-time using a method known
as the ying-yang algorithm that is specified in the Revised Report as a predicate grammar (see
below).

Syntax

[RR 7.1.1.A]:

A) PREF :: procedure yielding ; REF to.

[RR 7.4.1.a:d]:

a) WHETHER (NOTION) shields SAFE to SAFE:

where (NOTION) is (PLAIN)

or (NOTION) is (FLEXETY ROWS of)

or (NOTION) is (union of) or (NOTION) is (void),

WHETHER true.

b) WHETHER (PREF) shields SAFE to yin SAFE:

WHETHER true.

c) WHETHER (structured with) sheilds SAFE to yang SAFE:

WHETHER true.

1 In fact Algol 68 was the first language that seriously introduced the concept

Chapter 3: Language 32

d) WHETHER (procedure with) shields SAFE to ying yang SAFE:

WHETHER true.

See Also

• [II 2.4.3]

• [RR 7.1.1.A,7.4,7.4.1.a:d]

3.38 Widening

Meaning

Widening is one of the six coercions. It is allowed in strong syntactic positions. This coercion
transforms:

− Integers to real numbers of the same longsety.

− Real numbers to complex numbers of the same longsety.

− A bits value to an unpacked row of booleans.

− A bytes value to an unpacked row of characters.

Some implementations (like Algol 68 Genie) extend the meaning of widening by allowing
transformations from, say, int to long int or from long real to long long real, but this is not
allowed in the strict language, which requires using the leng and shorten operators instead.

Syntax

Simplified [RR 6.5.1.a:d]:

a) widened to SIZETY real FORM:

MEEK SIZETY integral FORM.

b) widened to structured with SIZETY real field re

SIZETY real field im mode FORM:

MEEK SIZETY real FORM;

widened to SIZETY real FORM.

c) widened to row of boolean FORM:

MEEK BITS FORM.

d) widened to row of character FORM:

MEEK BYTES FORM.

See Also

• Coercion

• [RR 6.5]

3.39 Worthy Character

Meaning

In the representation language both symbols and typographical display features are realized as
a set of worthy characters and the newline. Effectively, an Algol 68 program is a sequence of
worthy characters and newlines.

Different Algol 68 implementations support different sets of worthy characters. The GNU
Algol 68 compiler considers the following characters as worthy characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

Chapter 3: Language 33

space tab " # $ % & ’ () * + , - . / : ; < = > [\]

^ _ | ! ? ~

See Also

• Section 2.4 [Representation Language], page 5,

• [SHR 1]

34

4 Implementation

35

5 Other

5.1 Orthogonal

Meaning

Adriaan van Wijngaarden championed the notion of orthogonal programming language and
applied the notion in all its strength in the design of Algol 68. An orthogonal programming
language is one such that it comprises a number of primitive independent concepts which are
then applied in an orthogonal way. This makes the language very expressive, reduces the number
of arbitrary rules (which the programmer has to remember) and avoids redundancy.

There are many examples of orthogonality in Algol 68. In fact, what is seldom found are
arbitrary rules! One nice example is: take the notions of the comma separator , (in the Report
that symbol is known as the and also token), collateral clauses, parallel clauses, declarations,
multiple sub-scripting, actual argument passing, row display and structure display. These con-
cepts are all independent. Now let’s establish a rule: the comma separator implies collateral
elaboration. Then let’s apply this rule “orthogonally” by combining the concepts above.

Starting with the most obvious example, the units in the following collateral clause are
elaborated collaterally, no surprise there:

(x * 2, y / 2)

If the following parallel clause there is still collateral elaboration, and it would be expected:

par begin generate data (), consume data () end

But then the indexes in the following multiple subscripting are also elaborated collaterally:

play voice ((monster at[get x (current map), get y (current map)]))

The actual parameters in the following procedure call are elaborated... collaterally!:

encrypt buffer (str, get random (seed))

The following contracted identity declarations are elaborated, surprise surprise, collaterally:

[]real randoms1 = get random (seed), randoms2 = get random (seed)

The field positions in the following structure display are also elaborated collaterally:

maintainer maint = (default name,

default url,

get last package (packages))

You get the point: there is no Algol 68 code where a comma separator doesn’t imply collateral
elaboration. Out of strings, comments and pragmats that’s it. The programmer is only required
to remember a number of N+M concepts (like the ones enumerated above) instead of the effect
of combining them in N*M different combinations.

Algol 68 is not absolutely orthogonal, it has rules that introduce exceptions. An example is:
“sizety modifiers can be applied to int real, complex, bits, bytes modes, but not to structured
or rowed modes”.

Usage

• “Algol 68 is an orthogonal programming language”.

• “In this language concepts are applied orthogonally”.

• “That rule you mention is not orthogonal”.

See Also

• [RR 0.1.2]

Chapter 5: Other 36

5.2 Uninitiated Reader

Meaning

The original Report on the Algorithmic Language Algol 68, accepted in December 1968, was
notoriously difficult to read, not only because of the usage of the two-level grammars and formal
representation, but also because it lacked pragmatic descriptions.

The Revised Report, accepted at the end of 1973, incorporated many improvements in the
described language, but also added many pragmatic descriptions to improve the readability. It
also acknowledged the reported difficulties in the following famous paragraph in [RR 0.1.1]:

“The Group wishes to contribute to the solution of the problems of describing a
language clearly and completely. The method adopted in this Report is based upon
a formalized two-level grammar, with the semantics expressed in natural language,
but making use of some carefully and precisely defined terms and concepts. It is
recognized, however, that this method may be difficult for the uninitiated reader.”

It is to note that, although the readability problems were in their most part fixed by the
Revised Report, which was a way more accessible document than the original report, the bad
reputation of the later persisted and contributed to create FUD and the false impression that
the described language (as opposed to the method of representation) was very difficult to learn.

Usage

The uninitiated reader or simply the uninitiated is sometimes used to refer to inexperienced
programmers or users.

C. H. Lindsey dedicated his Informal Introduction to ALGOL 68 “To the Uninitiated Reader”.

See Also

• [RR 0.1.1]

37

Concept Index

FDL, GNU Free Documentation License 48

38

GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU
General Public License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies
of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no war-
ranty for this free software. For both users’ and authors’ sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which is precisely where it is
most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice
for those products. If such problems arise substantially in other domains, we stand ready to
extend this provision to those domains in future versions of the GPL, as needed to protect the
freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

https://www.fsf.org

GNU General Public License 39

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.

GNU General Public License 40

The Corresponding Source need not include anything that users can regenerate automati-
cally from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of theWIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the
Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable

GNU General Public License 41

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything

GNU General Public License 42

designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authoriza-
tion keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The infor-
mation must suffice to ensure that the continued functioning of the modified object code is
in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

GNU General Public License 43

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material gov-
erned by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

GNU General Public License 44

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (includ-
ing a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commit-
ment, however denominated, not to enforce a patent (such as an express permission to
practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license
to downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.

GNU General Public License 45

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Gen-
eral Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-

GNU General Public License 46

ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively state the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

https://www.gnu.org/licenses/

GNU General Public License 47

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first, please read https://

www.gnu.org/licenses/why-not-lgpl.html.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html
https://www.gnu.org/licenses/why-not-lgpl.html

48

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

https://www.fsf.org

GNU Free Documentation License 49

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

GNU Free Documentation License 50

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

GNU Free Documentation License 51

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

GNU Free Documentation License 52

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

GNU Free Documentation License 53

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

GNU Free Documentation License 54

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

	Introduction
	Metalanguage
	Aleph
	Pseudo Comment
	Reference Language
	Representation Language
	Strict Language
	Taggle

	Language
	Actual Parameter
	Affirmation
	Comment
	Completer
	Contraction
	Declarer
	Development
	Enquiry Clause
	Environment Enquiry
	Expression
	Field Selector
	Flip and Flop
	Formal Declarer
	Formal Parameter
	Frobyt
	Go-On Symbol
	Incestuous Union
	Indicator
	Longsety
	Monads and Nomads
	Mode Indication
	Mode-Unit
	Ravelling
	Shortsety
	Sizety
	Statement
	Specification Part
	String Break
	Structure Display
	Subname
	Subscript
	Symbol
	Token
	Trimmer
	Vacuum
	Void-Unit
	Well-Formedness
	Widening
	Worthy Character

	Implementation
	Other
	Orthogonal
	Uninitiated Reader

	Concept Index
	GNU General Public License
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

