
AB 43p.19

AB43.3.2
A Modules and Separate Compilation Facility for ALGOL 68.

By C. H. Lindsey (University of Manchester)

and H. J. Boom (Mathematisch Centrum, Amsterdam)

The following specification has been released by the IFIP Working
Group 2.1 Standing Subcommittee on ALGOL 68 Support, with the
authorization of the Working Group.

This proposal has been scrutinized to ensure that
a) it is strictly upwards-compatible with ALGOL 68,
b) it is consistent with the philosophy and orthogonal framework
of that language, and
c) it fills a clearly discernible gap in the expressive power of
that language.

In releasing this extension, the intention is to encourage
implementers experimenting with features similar to those
described below to use the formulation here given, so as to avoid
proliferation of dialects.

Acknowledgements

These proposals, which have been discussed over a long period of time by
the ALGOL 68 Support Sub-committee, owe their origin to the proposals of
Schuman [I] and of the Cambridge compiler team [22. They have been
discussed extensively at meetings of the Sub-committee and in
correspondence between members of its Task Force on Modules and Separate
Compilation. The authors of the present work wish to record their thanks
to all those who have contributed in this way, and especially to Dr R. B.
K. Dewar of the Courant Institute and Dr A. D. Birrell of Cambridge
University.
[I] Schuman, S. A., "Towards Modular Programming in High-Level Languages",
ALGOL Bulletin No. 37, July 1974, AB37.4.1.
[2] Bourne, S. R., Birrell, A. D. and Walker, I., ALGOL 68C Reference
Manual, 1975.

This document is in three sections:
I. Informal Description of Modules and Separate Compilation, by C. H.

Lindsey.
2. Formal Deescription of Modules and Separate Complation, by C. H.

Lindsey.
3. Implementation Methods for Modules and Separate Compilation, by H.

J. Boom.

AB 43p. 20

Informal description of Modules and Separate ComPilation.

I Separate compilation and protection.

These are two distinct concepts which must nevertheless be considered
together in order to make a viable system. "Protection" implies a mechanism,
better than classical block structure, for preventing indicators defined in
one place from being applied in other places where they shouldn't. "Separate
compilation" is a compile-time activity, designed to split large programs
into manageable chunks and to provide a library mechanism. The features are
independent in that the user should not be forced to use the one in order to
gain the benefits of the other. On the other hand, the unit whose contents
are to be protected will frequently be also a convenient unit for separate
compilation, and therefore the use of the two features together should be as
comfortable as possible. This proposal does not attempt to provide an
"Abstract data type" facility. The proposed protection and separate
compilation mechanisms are orthogonal to the existing ALGOL 68 "concrete"
data types.

2 Definition modules.

A definition module can be declared anywhere (but typically in the outer
reach, and often compiled separately):

MODULE F : DEF LOC STRING s; read(s);
PUB LOC FILE f; open(f, s, standin channel)

POSTLUDE
close(f); print(("file ", s, " closed"))

FED;

and it can be accessed anywhere within its reach

LOC STRING message;
ACCESS F (LOC STRING t; get(f, t); message := t[2:])

(controlled clause)
(access-clause)

The effect is to elaborate the body of the definition module, inserting the
controlled clause just before the POSTLUDE. From within the controlled
clause (which is, in general, an ENCLOSED-clause), the identification
mechanism first searches the declarations within itself, then those declared
PUBlicly in the module (i.e. 'f', but not 's'), and then those in the reach
outside the access-clause. An access-clause can return a value, coercions
being passed inside it as with other ENCLOSED-clauses:

LOC STRING message :=
ACCESS F

(LOC STRING t; PROC prs = REF STRING: (get(f, t); t); prs)

Observe the difference between

ACCESS A,B (...) and ACCESS A ACCESS B (...)

both of which are legal. Of course, the second creates one more scope level
than the first, but there could also be a difference of meaning if A
happened to PUBlicize another definition module B. Moreover, if both A and B
happened to PUBlicize the same identifier, the compiler would report an
error in the first case, but not in the second. The first form is therefore

AB 43p.21

to be preferred, especially when A and B are
which know nothing of each other's existence
PUBlications may be unknown to the user.

separately compiled modules
and whose complete list of

Definition modules are particularly intended for providing packages whose
inner workings can be concealed from their users. It is cutomary at this
stage to exhibit a module for implementing a stack:

MODULE STACK :
DEF

INT stacksize : 100;
LOC [1:stacksize] INT st;
LOC INT stptr := O;
PUB PROC

push = (INT n)INT:
((stptr+::1)<=stacksize ~ st[stptr] := n

I , print("stack overflow"); stop) ,
pop = INT:

(stptr>O ~ st[(stptr-:=1)+1]
' print("stack underflow"); stop) I

POSTLUDE
(stptr/=O I print("stack not emptied"); stop)

FED;

Now this module may be accessed

ACCESS STACK (push(1); push(2); print(push(pop)); pop; pop)

Note that ACCESS is to be regarded primarily as a mechanism for permitting
PUBlicized indicators to be made visible:

ACCESS STACK
(push(1); push(2);

(PROC push = C something else C, pop = C something else C;
push; pop;
ACCESS STACK (print(push(pop)) # prints 2 #)
); pop; pop

)

When ACCESS STACK is encountered at the outer level, it is "invoked", i.e.
its body is elaborated up to its POSTLUDE and side effects (in this case the
allocation of space for 'st') may occur. The ACCESS STACK at the inner level
can see the outer one, there is no fresh invocation and the same STACK is
accessed. The postlude is not elaborated until the outer ACCESS is finally
completed.

Although it can be contrived that two invocations of a module coexist,
this is to be regarded as a most unusual situation. Please do not confuse
modules with SIMULA classes. If you want to have more than one stack
available there is a proper way to go about it.

MODULE STACKS =
DEF

INT stacksize = 100;
MODE S = STRUCT ([1:stacksize] INT st, INT stptr);
PUB MODE STACK = REF S;
PUB PROC

newstack = STACK:
(HEAP S s; stptr OF s := O; s) ,

push = (STACK s, INT n)INT:
(REF INT sp = stptr OF s;
((sp+::1)<:stacksize I (st OF s)[sp] :: n

FED;

, I print("stack overflow"); stop)) ,
pop = (STACK s)INT:

(REF INT sp = stptr OF s;
(sp>O ~ (st OF s)[(sp-::1)+1]

I print("stack underflow"); stop))

AB 43p.22

Observe that the postlude is not appropriate in this version, and it has
therefore been left out. The user may declare STACK variables for himself
but, if he is honest, he will pretend he does not know about the STRUCT with
which STACKs are implemented. However, there are no secret modes in ALGOL
68, so a malicious user cannot be prevented from writing duplicate declarers
and making his own STACKs. Observe that this particular STACKS module
reserves no storage space - and indeed its invocation has no side effects
whatsoever.

Invocations are thus shared whenever it can be detected statically that
this is possible. Modules may access other modules, but it is still possible
to avoid all unnecessary invocations at compile time.

MODULE A : DEF ... FED,
B : DEF ... FED,
C = ACCESS A,B DEF ... FED;

the PUBlicized declarations of A and B are visible inside C,
but are not available to a user of C unless he specifically
asks for them #

ACCESS B,C (...)

Here (assuming nothing is invoked to start with) B is invoked first. The.
attempt to access C finds that A and B are needed and it therefore invokes A
(the first of them). It then finds that B is already invoked, so just makes
the existing invocation accessible inside C. After that, C itself can be
invoked and finally the invocations of B and C (but not A) are made
available to the inside of the controlled clause. When this has been
elaborated, the modules are revoked (i.e. their postludes, if any, are
elaborated) in the inverse order of their invocation.

Had it been required that the PUBlicized declarations of B should
be visible to accessors of C, then C could have been declared

MODULE C : ACCESS A, PUB B DEF ... FED

whereupon the access-clause ACCESS C (...) would have had the same effect
as ACCESS B,C (...) previously (except that the order of invocation would
then have been A, B, C instead of B, A, C).

Here is a carefully chosen confusing example to show exactly what
happens:

MODULE A = DEF PUB LOC INT i := 0 FED;
MODULE B = ACCESS A DEF i+:=I; ACCESS A (i+:=I) FED;
PROC c = VOID: ACCESS A (i+:=I; ACCESS B (print(i)));
ACCESS A (i+:=I; c)

We have, at various times, considered schemes which would have made this
example print I, 2, 3 or 4, but in the version now defined it prints 3. To
see why this is so, consider first those access-clauses which will not
invoke A afresh because they can identify (as shown by the dotted lines) an
existing invocation. This leaves two other access-clauses (one of them in
the body of the procedure) which are bound to create new invocations of A
whenever they are elaborated. Next consider the identification of the
applications of 'i'. Clearly, they all identify the 'LOC INT i' in A, but

AB 43p.23

they do so indirectly via particular invocations of A, as shown by the thick
lines.

MODULE A : DEF PUB LOC INT i :: O FED;
MODULE B : ACCESS A # whether this invokes a fresh A depends

I upon where B is accessed #
DEF i+:: I; ACCESS A (i+::I) FED;

I I t ,I

PROC c : VOID: ACCESS A # always a fresh A #
T (i+::I;~ ACCESS iB # this B does not invoke

l a fresh A #
.......... (prlnt(i)));
t j

ACCESS A # always a fresh A #
(i+::I; c)

By the time the call of 'c' is reached, A will have been invoked and the
variable 'i' generated thereby will have been incremented to +I. However,
the call of 'c' invokes another A and generates another variable 'i' which
soon gets incremented to +I. The ACCESS B invokes B, but it does not invoke
a fresh A, and therefore both the 'i's in B identify the same (i.e. the
second) 'i', which therefore gets incremented twice more. Finally, the 'i'
in 'print(i)' identifies the second 'i' (whose value is now +3) as shown (B
is not involved, as it only accesses A privately).

Here is a final example to show how a well known dangerous example can be
made safe:

BEGIN
C same as Report 11.12 up to and including MODE PAGE C;
MODULE BUFFERS =
DEF [I : nmb magazine slots] REF PAGE mag;

INT in := I, ex := I;
SEMA full slots = LEVEL O, free slots = LEVEL nmb magazine slots,

in buffer busy = LEVEL I, out buffer busy = LEVEL I;
PUB MODULE

CRITICALIN =
DEF PUB REF [] REF PAGE magazine = mag,

PUB REF INT index = in;
DOWN free slots; DOWN in buffer busy

POSTLUDE
UP full slots; UP in buffer busy

FED,
CRITICALOUT = C similarly C

FED;
ACCESS BUFFERS

BEGIN
PROC par call = C as Report C;
PROC producer = (INT i) VOID:

DO HEAP PAGE page;
get (infile[i], page);
ACCESS CRITICALIN

(magazine[index] := page;
index MODAB nmb magazine slots PLUSAB I)

OD;
PROC consumer = C similarly C;
PAR (C as in Report C)
END

END

AB 43p.24

3 Libraries.

Library procedures should be grouped together into sensible packages.
Thus the library-prelude might contain:

MODULE MATMODE : DEF PUB MODE MAT :
C the standard mode for matrices C

FED;
MODULE MATRICES = ACCESS PUB MATMODE

DEF
C declares a collection of PUBlicly known
procedures for matrix handling, which possibly use
some secret inner procedures and secret global
variables, hereby initialized C

FED;
MODULE VIBRATIONS = ACCESS MATRICES, PUB MATMODE

DEF
C declares a collection of PUBlicly known
procedures for analysing the oscillations of
structures, which use (but do not PUBlicize) the
matrix handling procedures PUBlicized by MATRICES
C

FED;
MODULE STRESSES : ACCESS MATRICES, PUB MATMODE

DEF
C declares a collection of procedures for
analysing stresses C

FED;

These four module-declarations would be compiled into the library
independently of one another except that, presumably, MATMODE had to be
compiled first and MATRICES had to be compiled (or at least have its PUBlic
interface compiled) before the remaining two. Observe that accessors of any
of them automatically get to see the mode MAT, but users of VIBRATIONS and
STRESSES do not thereby get to see MATRICES.

A particular-program can now invoke one, any two or three, or all of
them:

ACCESS VIBRATIONS, STRESSES
BEGIN

• e. e

ACCESS MATRICES
IF ... THEN ... FI;

. . . e

END

The closed-clause here appears to be being elaborated inside two modules.
Actually, it is being elaborated inside four. What happens is that the
system first tries to invoke VIBRATIONS. It finds that, for VIBRATIONS,
MATRICES is required and it can see (at compile time) that no invocation of
MATRICES exists in the static environment. It therefore invokes MATRICES
(which thereby invokes MATMODE by the same mechanism) and after that it
invokes VIBRATIONS. It now tries to invoke STRESSES, which ~iso requires
MATRICES (and MATMODE), but now it knows that invocations of these already
exist, so it can invoke STRESSES immediately. Inside the BEGIN ... END, the
PUBlicized declarations of MATMODE, VIBRATIONS and STRESSES (but not those
of MATRICES) are available.

When ACCESS MATRICES is encountered, it again knows at compile time that
MATRICES is already invoked. The only action required, therefore, is to
PUBlicize the declarations of MATRICES within the IF ... FI. Note that this

AB 43p.25

example also illustrates how a particular-program may begin with an ACCESS
(an access-clause is an ENCLOSED-clause).

4 Separate compilation using definition modules.

The following example shows how a compiler, in which the first pass has

.several phases, would be compiled in several packets. The last packet is a
particular-program - the rest are module-declarations which are to be
gathered into a "user-prelude", which is in effect a private library. Each
packet contains an ACCESS, followed by a list of module-calls. It may be
useful to regard the standard-prelude (including the particular-prelude) as
another module, and to imagine that each of these lists implicitly commences
"ACCESS STANDARDPRELUDE".

MODULE COMMUNICATIONAREA :
DEF ... FED

MODULE PASSI =
ACCESS COMMUNICATIONAREA
DEF ... FED

MODULE PHASEIA =
ACCESS PASSI
DEF

PUB PROC phasela = ... ;

FED

MODULE PHASEIB :

ACCESS PASSI
DEF

PUB PROC phaselb = ... ;

FED

MODULE PASS2 :

ACCESS COMMUNICATIONAREA
DEF

PUB PROC pass2 = ... ;
I o .

FED

ACCESS COMMUNICATIONAREA

BEGIN
ACCESS PASSI

BEGIN
ACCESS PHASEIA BEGIN ... phasela ... END;
i o .

ACCESS PHASEIB BEGIN ... phaselb ... END;
o e .

END;
ACCESS PASS2

BEGIN pass2 END
END

AB 43P.26

5 Separate compilation using holes.

The system described above essentially permits the building of programs
in a bottom-up manner. However, strong opinions have been expressed that
top-down building should also be provided. We found it necessary to propose
a completely separate mechanism - the hole - for this, since all attempts to
make the gap between the prelude and postlude of a definition module do this
job proved fruitless.

BEGIN
C interesting declarations C;
. c o

IF ...
THEN C more interesting declarations C;

NEST "a" # this construct is a formal-hole #
ELSE C yet more declarations C;

NEST "b"
FI;

. B e

END

EGG "a" :
(C some serial-clause. All the declarations preserved in
at "a" are available here C)
this construct is an actual-hole #

the nest

EGG "b" :
(..................)

The three packets shown would be compiled in the given order. Clearly,
the semantics simply state that the meaning of the collection of packets is
the same as that of the particular-program obtained by removing the
formal-holes and stuffing the gaps with their matching actual-holes. The
string- (or character-) denotations "a" and "b" are hole-lndications. Their
syntax is quite different from other indications in the language because
they do not obey the usual identification rules of other indicators. Indeed
they must be unique within the program. Normally, they should be of the form
letter followed by letters or digits, but the formal definition allows some
flexibility to suit the local operating environment (I0.6.2.b) so that
implementers can, for example, interpret them as the names of the files
where the relevant interface information has been stored.

Holes also provide a mechanism for introducing program segments written
in other languages. Suppose, for example, that the implementer has provided
means to access FORTRAN subroutines. Then users would be allowed to write
declarations such as the following:

PROC(REAL)REAL function : NEST FORTRAN "FUNCTION";

The compiler would then know to generate a FORTRAN-style calling sequence at
calls of 'function', and the loader would be instructed to find the
subroutine FUNCTION in some FORTRAN-style library. The Formal Definition
contains an example (5.6.1.g) of what the syntax might permit for this
facility.

There are some problems, especially for implementations using the
static/dynamic chain method of keeping track of their stack frames,
concerning the scope of routlne-texts whose bodies contain formal-holes. The
scope of such a routine is therefore made to be the smallest possible scope,
as if its body had contained identifiers identifying defining occurrences

AB 43p.27

in every range within which it was contained (just in case the actual-hole
eventually stuffed were to contain such identifiers). Thus the elaboration
of the following is always undefined:

LOC PROC (REAL) REAL pp;
BEGIN
LOC REAL x;
PROC p : (REAL a) REAL: NEST "p";
pp :: p

END

(because the actual-hole stuffed into "p" might contain an application of
'x'). However, it is usually easy to avoid the problem entirely by writing,
for example:

PROC(REAL)REAL p = NEST "p";

rather than

PROC p : (REAL a)REAL: NEST "p";

In addition to stuffing an actual-hole into a formal-hole, several
definition-module-packets may be stuffed as well. Thus we can have

EGG "a" : MODULE A : DEF ... FED

EGG "a" : MODULE B = ACCESS A DEF ... FED

and finally
EGG "a" : BEGIN ... ACCESS A,B (...) ... END

Presumably, these (or at least their PUBlic interfaces) would have to be
compiled in the order given, but to avoid all possibility of confusion there
is a restriction that A and B must not be identifiable (neither as
module-indications, nor as mode-indlcations, nor as operators) in the NEST
"a" into which these EGGs are to fit. Indeed, it is reasonable to imagine
that all the packets in the VIBRATIONS and STRESSES example above had been
stuffed into a formal-hole representing the standard-prelude, as if they had
been preceded by an implicit 'EGG "standard prelude" ='. (Thus, whether the
standard-prelude is to be regarded as a definition module or as a
formal-hole is purely a matter of taste - moreover actual implementers are
likely in fact to treat it as a special case different from either.)

6 Compilation systems.

A "module-interface" is the document (written in some cryptic notation
only understood by the compiler) which conveys information about PUBlicized
declarations from a separately compiled definition module to its accessors.
A "hole interface" does the same thing between a formal- and an actual-hole.
Interfaces are output by the compilation of the packets which define them
and may be re-input when compiling packets which require them.
Alternatively, a module-interface (produced by a previous compilation of a
definition-module-packet) may be "imposed" on a recompilation of that
packet, ensuring if possible that the object-module produced is still
consistent with that interface. In this way, re-compilation of other packets
dependent upon that interface can be avoided. (However, we see no reasonable
hope of imposing hole-interfaces.)

AB 43p.28

7 Order of compilation.

Clearly, a hole must be compiled before its stuffing. Ordinarily, a
particular-program or module must be compiled after any separately compiled
module which it accesses. However, this order can be varied by using imposed
interfaces.

Suppose that a user wishes to have a module A which is to be used by a
main program B, but that he wishes to compile (and even partially test) B
before A. He therefore writes a skeletal module-declaration A' which
contains just enough to fix the interface between A and B. A' is compiled to
produce a module-interface A' (presumably this contains, inter alia, offsets
for the indicators PUBlicized in A'). B is now written and compiled using A'
(moreover the object-module produced for B is aware of the time stamp that
was given to A' at its instant of creation). Next, the final version of A is
written but, when it is compiled, the module-interface A' is imposed upon
it. Clearly, the compiler will abort if A is not "consistent" with ~'.
Compiler writers should be encouraged to make their definitions of
"consistent" as liberal as possible. For example, there should be no
difficulty in accepting the offsets fixed in A' even if the corresponding
indicators in A turn out to have been declared in a different order. Note
that no new interface ~ is produced. If now A is to be recompiled to mend
some bug, and it is hoped to avoid re-compilation of B, then the inferface
produced by or imposed upon the previous compilation of A (e.g. A') should
be imposed and the compiler will try to produce an object module consistent
with it if it possibly can. If it cannot, it will say so, signifying that
recompilation of B cannot now be avoided.

Of course, the user should be aware that he may gain in efficiency, or in
improved optimizations, or in the reduction of wasted space, if he finally
recompiles A to produce its best interface A, and then re-compiles B using
A.

8 Formal definition.

The formal definition of these proposals which follows uses the existing
formalism and conventions of the Revised Report. Note that, although it is
expressed ~s modifications to the Report, no authority to alter the official
Report text is implied. Moreover, these particular modifications have been
chosen so as to minimize the number of places in the Report affected, and
had these features been part of the language from the very beginning, their
formal definition might have been simpler.

AB 43p.29

Formal Definition of Modules and Seoar@%@ ComDil%t~gn.

Part I - Definition Modules.

{{Module-declarations are new kinds of declarations. New kinds of entry in
the nest are therefore needed.}}

1.2.3.
B) LAYER :: new DECSETY LABSETY INKSETY.
E) DEC :: ... ; MOD.
L) MODSETY :: MODS ; EMPTY.
M) MODS :: MOD ; MODS MOD.
N) MOD :: module REVS TAB.
O) REVSETY :: REVS ; EMPTY.
P) REVS :: REV ; REVS REV.
Q) REV :: TAU reveals DECSETY INKS.
R) TAU :: MU.
S) INKSETY :: INKS ; EMPTY.
T) INKS :: INK ; INKS INK.
U) INK :: invoked TAU.

4.8.1.
E)
F)

PROP :: ... ; INK.
QUALITY :: ... ; module REVS ; invoked.
TAX :: ... ; TAU.

{{'MOD's will be introduced into the nest by module-declarations. 'INK's
will be introduced by module-calls.}}

{{New kinds of indicator areneeded to identify these new properties.}}

4.8.1.
A) INDICATOR :: ... ; module indication.

{{Modules are ascribed to module-indications by means of module-
declarations.}}

4.9. Module declarations

4.9.1. Syntax

a)

b)

NESTI module declaration of MODS{41a,e} :
module{94d} token,

NESTI module joined definition of MODS{41b,c}.
NESTI module definition of module REVSETY REV TAB{41c} :

where <REV> is <TAU reveals DECSETY invoked TAU>
and <TAB> is <bold TAG>,

where <NESTI> is <NOTIONI invoked TAU NOTETY2>,
unless <NOTIONI NOTETY2> contains <invoked TAU>,
module REVSETY REV NESTI defining module indication

with TAB{48a},
is defined as{94d} token,
NESTI module text publishing REVSETY REV defining LAYER{c,-}.

AB 43P.30

c) NESTI module text
publishing REVSETY TAU reveals DECSETY INKSETY INK
defining new DECSETYI DECSETY INK{b} :

where <INKSETY> is <EMPTY> and <REVSETY> is <EMPTY>,
def{94d} token,
NESTI new new DECSETYI DECSETY INK module series

with DECSETY without DECSETYI{d},
fed{94d} .token ;

NESTI revelation publishing REVSETY defining LAYER{36b},
def{94d} token,
NESTI LAYER new DECSETYI DECSETY INK module series

with DECSETY without DECSETYI{d},
fed{94d} token,
where <LAYER> is <new DECSETY2 INKSETY>.

d) NEST3 module series with DESCETY without DECSETYI{c} :
NEST3 module prelude with DECSETY without DECSETYI{e},

NEST3 module postlude{f} option.
e) NEST3 module prelude with DECSETY1 without DECSETY2{d,e} :

strong void NEST3 unit{32d}, go on{94f} token,
NEST3 module prelude with DECSETYI without DECSETY2{e} ;

where<DECSETYI without DECSETY2> is
<DECSETY3 DECSETY4 without DECSETY5 DECSETY6>,

NEST3 declaration with DECSETY3 without DECSETY5{41e},
go on{94f} token,
NEST3 module prelude with DECSETY4 without DECSETY6{e} ;

where <DECSETYI without DECSETY2> is <EMPTY without EMPTY>,
strong void NEST3 unit{32d} ;

NEST3 declaration with DECSETYI without DECSETY2{41e}.
f) NEST3 module postlude{d} :

postlude{94d} token, strong void NEST3 series with EMPTY{32b}.
g)* module text :

NEST module text publishing REVS defining LAYER{c}.

{Examples:
a) MODULE A : DEF STRING s; read(s);

PUB STRING t = "file"+s, PUB REAL a FED,
B : ACCESS A DEF PUB FILE f;

open(f, t, standin channel)
POSTLUDE close(f) FED

b) A = DEF STRING s; read(s);
PUB STRING t = "file"+s, PUB REAL a FED .

B = ACCESS A DEF PUB FILE f;
open(f, t, standin channel)
POSTLUDE close(f) FED

c) DEF STRING s; read(s);
PUB STRING t = "file"+s, PUB REAL a FED .

ACCESS A DEF PUB FILE f;
open(f, t, standin channel) POSTLUDE close(f) FED

d) STRING s; read(s); PUB STRING t = "file"+s, PUB REAL a .
PUB FILE f; open(f, t, standin channel) POSTLUDE close(f)

e) STRING s; read(s); PUB STRING t : "file"+s, PUBLIC REAL a .
PUB FILE f; open(f, t, standin channel)

f) POSTLUDE close(f) }

{Rule b ensures that a unique 'TAU' is associated with each module-text
accessible from any given point in the program. This is used to ensure
that an 'invoked TAU' can be identified (7.2.1.a) in the nest of all
descendent constructs of any access-clause or module-text which invokes
that module-text.

In general, a module-text-pub!ising-REVS-defining-LAYER T makes 'LAYER'

AB 43P.31

visible within itself, and makes the properties revealed by 'REVS' visible
wherever T is accessed• 'LAYER' includes both a 'DECSETY' corresponding to
its public declarations (e.g. t and a in the first module-text of example
c), a 'DECSETYI' corresponding to its hidden declarations (e.g. s in that
example) and an 'INK' which links T to its unique associated 'TAU' and
signifies in the nest that T is now known to be invoked. 'REVS' always
reveals 'DECSETY INKSETY INK' (but not 'DECSETYI'), where 'INKSETY'
signifies the invocation of any other modules accessed by T. 'REVS' may
also reveal the publications of the other modules accessed by T if their
module-calls within T contained a public-token.}

4.9.2• Semantics

a) A "module" is a scene {2.1.1.1.d} composed of a module-text together
with an environ {2.1.1.1.c}.

b) A module-declaration D is elaborated as follows:
. the constituent module-texts of D are elaborated collaterally;
For each constituent module-definition DI of D,

. the yield {c} of the module-text of DI is ascribed {4.8.2.a} to the
defining-module-indication of DI.

c) The yield of a module-text T, in an environ E, is the module composed
of

(i) T, and
(ii) the environ necessary for {7.2.2.c} T in E.

d) A module-prelude C in an environ E is elaborated as follows:
• its unit or declaration is elaborated in E;
If another module-prelude D is directly descended from it,
then D is elaborated in E
{; otherwise, the elaboration of C is completed}.

{{The declarations in a module-prelude must contain public-symbols if they
are to be visible when the module is accessed.}}

4.1.1.
A) COMMON :: ... ; module.

e) NEST declaration with DECSETY without DECSETYI{49e} :
where <DECSETY without DECSETYI> is <EMPTY without DECSI>,

NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,49a,-} ;
where <DECSETY without DECSETYI> is <DECS without EMPTY>,

public{94d} token,
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,49a,-} ;

where <DECSETY without DECSETYI> is
<DECSETY without DECSI DECSETY2>,

NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,49a,-},
and also{94f} token,
NEST declaration with DECSETY without DECSETY2{e} ;

where <DECSETY without DECSETYI> is
<DECS DECSETY3 without DECSETYI>,

public{94d} token,
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,49a,-},
and also{94f} token,
NEST declaration with DECSETY3 without DECSETYI{e}.

{{Modules may be invoked by means of access-clauses.}}

A) ENCLOSED :: ... ; access.

AB 43p.32

3.6. Access clauses

3.6.1. Syntax

a) SOID NEST access clause{5D,551a,A341h,A349a} :
NEST revelation publishing EMPTY defining LAYER{b},

SOID NEST LAYER ENCLOSED clause{a,31a,33a,c,d,e,34a,35a,-}.
b) NEST revelation publishing REVSETY

defining new DECSETY INKSETY{a,49c} :
access{94d} token,

NEST joined module call publishing REVSETY revealing REVS{c},
where DECSETY INKS revealed by REVS{e,f}

and NEST filters INKSETY out of INKS{h}.
C} NEST joined module call publishing REVSETY revealing REVS{b,c} :

NEST module call publishing REVSETY revealing REVS{d,-} ;
where <REVSETY> is <REVSETYI REVSETY2>

and <REVS> is <REVSI REVS2>,
NEST module call publishing REVSETYI revealing REVSI{d,-},
and also{94f} token,
NEST joined module call publishing REVSETY2 revealing REVS2{o}.

d) NEST module call publishing REVSETY revealing REVS{c} :
where <REVSETY> is <EMPTY>,

module REVS NEST applied module indication with TAB{48b} ;
where <REVSETY> is <REVS>,

public{94d} token,
module REVS NEST applied module indication with TAB{48b}.

e) WHETHER DECSETYI DECSETY2 INKSI INKSET¥2 revealed by
TAU reveals DECSETYI INKSI REVSETY3
TAU reveals DECSETYI INKSI REVSETY4{b,e,f} :

WHETHER DECSETYI DECSETY2 INKSI INKSETY2 revealed by
TAU reveals DECSETYI INKSI REVSETY3 REVSETY4{e,f}.

f) WHETHER DECSETYI DECSETY2 INKSI INKSETY2 revealed by
TAU reveals DECSETYI INKSI REVSETY2{b,e,f} :

WHETHER DECSETY2 INKSETY2 revealed by REVSETY2
and DECSETYI independent DECSETY2{71a,b,c}.

g) WHETHER EMPTY revealed by EMPTY{e,f} : WHETHER true.
h) WHETHER NEST filters INKSETYI out of INKSETY INK{b} :

unless INK identified in NEST{72a},
WHETHER <INKSETYI> is <INKSETY2 INK>

and NEST INK filters INKSETY2 out of INKSETY{h,i} ;
where INK identified in NEST{72a},

WHETHER NEST filters INKSETYI out of INKSETY{h,i}.
i) WHETHER NEST filters EMPTY out of EMPTY{h} : WHETHER true.

{Examples:
a) ACCESS A, B (get(f, a); print(a))
b) ACCESS A, B
C) A, B
d) A • PUB B }

{In rule b, the 'invoked TAU's enveloped by 'INKS' represent those
modules wh ich might need to be invoked at any modu!e-ca11 whose
applied-module-indication identified a particular defining-
module-indication, whereas those enveloped by 'INKSETY' represent only
those which need invocation in the particular c(hntext, the remainder
having already been elaborated, as can be determinexi statically from the
'NEST'. The presence of 'INKSETY' in the nest of all descendent constructs

AB 43P.33

of the access-clause ensures that all modules now invoked will never be
invoked again within those descendents.

Rule f ensures the independence of declarations revealed by one
revelation; thus

MODULE A = DEF PUB REAL x FED, B = DEF PUB REAL x FED;
ACCESS A, B (x)

is not pA'oduced. However, rule e allows a given declaration to be revealed
by two public accesses of the same module, as in

MODULE A = DEF PUB REAL x FED;

MODULE B = ACCESS PUB A DEF REAL y FED,

C = ACCESS PUB A DEF REAL z FED;
ACCESS B, C (x+y+z)

in which the module-deflnitions for both B and C reveal x, by virtue of
the PUB A in their constituent revelations.}

{{Note that a particular-program may now consist of a joined-label-
definition followed by an access-clause. The defining-module- indications
identified thereby would be in the library-prelude or the user-prelude.}}

3.6.2• Semantics

a) A SOID-NEST-access-clause N, in an environ E, is elaborated as
follows:
If there exists a "first uninvoked" {b} module M of the revelation R of N
in E, with respect to 'NEST',
then

let M be composed from a module-text-defining-new-PROPSETY-INK T
itogether with a necessary environ};
• M is invoked {c} in E, giving rise to a new environ E4 {inside whose
locale 'INK' accesses the result of invoking M};

let Y be the yield {a} in E4 of a SOID-NEST-INK-access-clause akin to
N {, in which M will be known to be already invoked};
• {M is revoked, i.e.} the series of the constituent postlude, if any,
of T is elaborated in E4;
• the yield of N in E is Y;
• it is required that Y be not newer in scope than E;

otherwise,
• let E2 be the environ established around and beside E according to R
{the locale of E2 corresponds to the publicized properties of the
modules accessed by R};
. E2 is "furnished" {d} with {the values publicized by the constituent
module-calls of} R in E;
• the yield of N in E is the yield of the ENCLOSED-clause of N in E2;

b) The "first uninvoked" module of a revelation R in an environ E is
determined, with respect to some 'NEST', as follows:
If there exists some constituent module-call-revealing-REVSETY-TAU-
reveals-PROPSETY-INK C of R such that the predicate 'unless INK identified
in NEST' holds, and which is the textually first such module-call,
then

. let the yield of the applied-module-indication of C in E be a {not
yet invoked} module M composed of a module-text T and an environ El
{necessary (7.2.2.c) for T};
If T has a revelation S,

and if there exists a first uninvoked module MI of S in El with
respect to 'NEST',
then MI is the first uninvoked module of R;
otherwise, M is the first uninvoked module of R;

otherwise, there is no first uninvoked module of R.

AB 43p.34

{Observe that the choice of C from among the module-calls of R depends
only on 'NEST' and not on E. It follows, therefore, that the choice can
always be made at compile time. E is only required in order to obtain the
correct necessary environ for M.}

c) A module composed of a module-text-defining-new-PROPSETY-INK T and an
environ El {necessary for T} is invoked in an environ E as follows:
If T has a{n already invoked} revelation S,
then

• let E2 be the environ established around El, beside E, according to
S;
• the locale of E2 is "furnished" {d} with {the values publicized by
the descendent module-calls of} S in E;

otherwise, let E2 be El;
• let E3 be the environ established around E2 and, if E is a "module
locating environ" {see below}, then beside E and otherwise upon E,
according to T {the locale of E3 corresponds to all the properties
(publicized or not) declared in T};
• 'INK' is made to access the module composed of T and E3 inside ~he
locale of E3 {so that, within T, T itself will be seen to be already
invoked};
• the constituent module-prelude of T is elaborated in E3;

let E4 be the environ, known as a "module locating environ",
established around E, beside E3, according to some
NOTION-defining-new-INK;
• 'INK' is made to access the module composed of T and E3 inside the
locale of E4;
• the invoking of M is said to "give rise" to the environ E4.

{Observe that all the environs created during the invocation of the
uninvoked modules (b) of the revelation of an access-clause N have the
same scope, which is newer than that of the environ in which N is being
elaborated but older than that of any environ created during the
elaboration of the ENCLOSED-clause of Ni}

d) A locale L is "furnished" with a revelation R in an environ E as
follows:
For each descendent module-REVS-applied-module-indication of R,

For each 'TAU reveals PROPS' enveloped {1.1.4.1.c} by 'REVS',
• let the module "accessed" {e} by 'invoked TAU' inside E {it will be
found in some module locating environ (c)} be a{n already invoked}
module composed of a module-text T and an environ E3 {in which its
module-prelude was formerly elaborated};
For each value or scene accessed inside the locale of E3 by some
'PROP',

If 'PROPS' envelops that 'PROP' ('PROP' is to be publicized},
then 'PROP' is made to access that value or scene (if it does not so
access it already) inside L also•

e) The value or scene "accessed" by a 'PROP' inside an environ E,
composed of a locale L and an environ El, is the value or scene accessed
by 'PROP' inside L {2.1.2.c}, if L corresponds to a 'FROPSETY' enveloping
{1.1.4.1.c} that 'PROP', and, otherwise, the value or scene accessed by
'PROP' inside El.

{{Establishment "beside" an environ (as opposed to "upon" it) requires a
change to 3.2.2.b. The first bullet of that rule becomes:}}

. upon or beside an environ El, possibly not specified, (which determines
its scope,}

{{The two bullets commencing "if El is not specified ..." become:}}
. if El is not specified, then let El be E2 and let "upon El" be

AB 43P.35

assumed;
• E is newer in scope than El (is the same in scope as El) if the
establlshment is upon El (is beside El) and is composed of E2 and a new
locale corresponding to 'PROPSETY', if C is present, and to 'EMPTY'
otherwise;

{{Various new symbols have been invented:}}

9.4.1.d
module symbol{49a}
access symbol{36b}
def symbol{49c}
fed symbol{49c}
public symbol{36d,41e}
postlude symbol{49f}

MODULE
ACCESS
DEF
FED
PUB
POSTLUDE

{{Moreover, two more new symbols are yet to be invented for use in
compilation:}}

formal nest symbol{56b} NEST
egg symbol{A6a,c} EGG

separate

{{Minor changes are required at other places in the Report.}}

{{Identification}}

7.2.1.c+2 # , :>
or <QUALITYI> is <module REVS> or <QUALITYI> is <invoked>, #

{{The proper identification o f indicators declared via module-calls
ensured as follows:}}

is

3.0.1.
f)* NEST range : ... ;

NEST module text publishing REVS defining LAYER{49c,-} ;
NEST LAYER I LAYER2 module series

with DECSETY without DECSETYI{49d} ;
SOID NEST access clause{36a}.

7.2.2.
b) The defining NEST-range {a} of each QUALITY-applied-indicator-
with-TAX II contains {of necessity} either a QUALITY-NEST-LAYER-
defining-indicator-with-TAX I2, or else one or {possibly} more
applied-module-indications I3 directly descended from
NEST-module-calls-revealing-REVS where 'REVS' envelops 'QUALITY TAX'. II
is then said to "identify" that I2 or each of those I3.

{{This is sufficient to ensure, in conjunction with 7.2.2.c, the proper
scope for routines containing access-clauses.}}

{{1.1.4.2.c. The list of elidlble hypernotions must include:}}
... "without DECSETY" . "publishing REVSETY" . "revealing REVSETY"

{{The 'PROPSETY' to which a locale corresponds may now include
'INKSETY'.}}

an

2.1.1.1.b+I,+2,+4 # LABSETY => LABSETY INKSETY #

{{Revised pragmatic remark concerning scopes:}}

AB 43p.36

2.1.1.3.
b) Each environ has one specific "scope". {The scope of each environ is
never "older" (2.1.2.f) than that of the environ from which it is composed
(2.1.1.1.c).}

{{A module-text and a revelation must be establishing-clauses.}}

3.2.1.
i)* establishing clause : ... ;

NEST module text publishing REVS defining LAYER{49c,-} ;
NEST revelation publishing REVSETY defining LAYER { 36a,- }.

Part II - Separate Compilation

{{Separate compilation is performed by dividing a program into packets. Some
packets contain formal-holes, indicated by the nest-symbol, into which
actual-holes, contained in other packets and indicated by the egg-symbol,
may be stuffed.}}

5.1.
A) UNIT :: ... ; formal hole ; virtual hole.

5.6. Holes

5.6.1. Syntax

A) LANGUAGE :: algol sixty eight.
Extra hypernotions {e.g. "fortran"}
metaproduction rule.

B) ALGOL68 :: algol sixty eight.

may be added to the above

a)

b)

c)

d)

e)
f)
indication" are to be added for each extra terminal
"LANGUAGE", each containing just one alternative,
distinct 'bold TAG token'.

strong MOID NEST virtual hole{5A} :
virtual nest symbol, strong MOID NEST closed clause{31a}.

strong MOID NEST formal hole{5A} :
formal nest{94d} token, MOID LANGUAGE indication{e,f,-},

hole indication{d}.
MOID NEST actual hole{A6a} :

strong MOID NEST ENCLOSED clause{31a,33a,c,34a,35a,36a,-}.
hole indication{b} :

character denotation{814a} ; row of character denotation{83a}.
MOID ALGOL68 indication{b} : EMPTY.
Additional hyper-rules, for hypernotions of the form "MOID LANGUAGE

metaproduction of
which is to be a

{These MOID-LANGUAGE-indications may have severely restricted 'MOID's.
For example, the following has been suggested:

FORT fortran indication :
bold letter f letter o letter r letter t

letter r letter a letter n token.
where

LA~UAGE :: ... ; fortran.
FORT :: procedure with PERFORMERS yielding FOID ;

procedure yielding FOID.
PERFORMERS :: PERFORMER ; PERFORMERS PERFORMER.
PERFORMER :: FODE parameter.

AB 43P.37

FODE :: FAIN ; F~gT ; reference to FAIN ; ROWS of FAIN.
FAIN :: real ; long real ; integral ; COMPLEX ; boolean•
COMPLEX :: structured with real field letter r letter e

real field letter i letter m mode.
FOID :: FAIN ; void.

Although FORTRAN is now a fortran-indication, it may still be used, if
desired, as an operator or as a mode-indication.}

{Examples:
b) NEST "abc"
c) ACCESS A,B (x:=1; y:=2; print(x+y))
d) "a" . "abc" }

{Since no representation is provided for the virtual-nest-symbol, the
user is unable to construct vlrtual-holes for himself, but a mechanism is
provided (I0.6.2.a) for constructing them out of formal- and
actual-holes.}

{The yield of a virtual-hole is that if its closed-clause, by way of
pre-elaboration (2.1.4.1.c). No semantics for formal- or actual-holes is
provided since their elaboration is never called for.}

{{There are some implementation difficulties in determining the scope of a
routine whose routine-text contains a formal-hole, since there is no knowing
what indicators may be applied in the actual-hole eventually supplied.}}

7.2.2.c is modified as follows:

If C contains any QUALITY-applied-indicator-with TAX

• . . e

or if C contains a virtual-hole,
then E is El;
e e e

{{Thus a formal-hole F behaves for scope purposes as if the actual-hole
stuffed in its place contained identifiers identifying defining occurrences
in every range containing F.}}

{{The packets to be submitted to the compiler for separate compilation may
be module-declarations or actual-holes (or particular-programs) and, if they
are to be stuffed into formal-holes (rather than into the standard
environment), they are introduced by egg-symbols.}}

10.6. Packets

10•6•I. Syntax

a) MOlD NEST new MODSETY ALGOL68 stuffing packet{ATa} :
egg{94d} token, hole indication{56d}, is defined as{94d} token,

MOID NEST new MODSETY actual hole{56c}.
b) Additional hyper-rules, for hypernotions of the form "MOID NEST new
MODSETY LANGUAGE stuffing packet" are to be added for each extra {5.6.1.A}
terminal metaproduction of "LANGUAGE". A mechanism must be defined
{presumably with the aid of the Report defining that other language}
whereby all such LANGUAGE-stuffing-packets may be transformed into
ALGOL68-stuffing-packets {with the same meaning}•
c) NEST new MODSETYI MODS definition module packet of MODS{ATa} :

egg{94d} token, hole indication{56d}, is defined as{94d} token,

AB 43P.38

NEST new MODSETYI MODS module declaration of MODS{49a},
where MObS absent from NEST{e}.

d) new LAYERI new DECS MODSET¥1MODS STOP
prelude packet of MODS{A7a} :

new LAYERI new DECS MODSETYI MODS STOP
module declaration of MODS{49a},

where MObS absent from new LAYERI{e}.
e} WHETHER MODSETY MOD absent from NEST{c,d} :

WHETHER MODSETY absent from NEST{e,f}
and MOD independent PROPSETY{71a,b,c},

where PROPSETY collected properties from NEST{g,h}.
f) WHETHER EMPTY absent from NEST{e} : WHETHER true.
g) WHETHER PROPSETY! PROPSETY2 collected properties from

NEST new PROPSETY2{e,g} :
WHETHER PROPSETYI collected properties from NEST{g,h}.

n) WHETHER EMPTY collected properties from new EMPTY{e,g} :
WHETHER true.

i)* NEST new PROPSETY packet :
MOID NEST new PROPSETY LANGUAGE stuffing packet{a,b} ;
NEST new PROPSETY definition module packet of MObS{c} ;
NEST new PROPSETY particular program{A1g} ;
NEST new PROPSETY prelude packet of MODS{d}.

j)* letter symbol : LETTER symbol{94a}.
k)* digit symbol : DIGIT symbol{94b}.

{Examples:
a) EGG "abc" : ACCESS A,B (x::1; y::2; print(x+y))
c) EGG "abc" = MODULE A = DEF PUB REAL x FED
d) MODULE B = DEF PUB REAL y FED
The three examples above would form a compatible collection of packets

(I0.6.2.a) when taken in conjunction with the partlcular-program
BEGIN NEST "abc" END }

{In rule a above, 'MODSETY' envelops the 'MOD's defined by all the
definition-module-packets that are being stuffed along with the
stuffing-packet. In rules c and d, 'MODSETYI' need only envelop the 'MOD's
for those modules actually accessed from within that packet. The semantics
below are only defined if, for a collection of packets being stuffed
together, all the 'MOD's enveloped by the various 'MODSETYI's are
enveloped by 'MODSETY'.}

10.6.2. Semantics

{Packets are the units of separate compilation• It is necessary to
define the meaning of a collection of packets• This is done by
transforming the collection into an equivalent particular-program. It is,
of course, necessary for the packets of the collection to be compatible
with each other. Just one of the packets must be a particular-program.}

a) The meaning of a particular-program P, in the context of a collection
of other associated packets {not particular-programs} T, is determined as
follows:
• The user-prelude-with-MODSETY UP of the user-task UT from which P is
descended {1.1.1.e and I0.I.1.f} must be composed as follows:

For each new-LAYER1-new-DECS-MODSETYI-STOP-prelude-packet M, if any, in
T,

• UP contains a constituent new-LAYER1-new-DECS'MODSETY-STOP-
module-declaration akin to the module-declaration of M; {'MODSETY'
must envelop all the 'MOD's enveloped by all such 'MODSETYI's, and no
others, for the user-prelude of U to be syntactically correct;}

• UP contains no other constituent COMMON- declarations, and its only

AB 43P.39

constituent unit is composed of a skip {5.5.2.1.a};
If T contains any LANGUAGE-stuffing-packets, where 'LANGUAGE' is not
'ALGOL68',
then those packets are transformed {I0.6.1.b} into ALGOL68-stuffing-
packets {with the same meanings};
While there remain any formal-holes in UT,

• let H be one such MOID-NEST-formal-hole and let I be its
hole-lndication;
• if I is akin to any such I previously considered, then the meaning of
P is not defined;
• H is replaced {in UT} by a MOID-NEST-virtual-hole whose constituent
NEST-serial-clause S is composed as follows:

For each NEST-new-MODSETY1-definition-module-packet M, if any, in T
whose hole-indication "matches" {b} I,

• S contains a constituent NEST-new-MODSETY-module-declaration akin
to the module-declaration of M; {'MODSETY' must envelop all the
'MOD'S enveloped by all such 'MODSETYI's, and no ohers, for S to be
syntactically correct;}

• S contains no other constituent COMMON-declarations, and its only
constituent unit is composed of the constituent ENCLOSED-clause of the
{only} MOID-NEST-new-MODSETY-ALGOL68-stuffing-packet in T whose
hole-indication matches I;

If there remain any packets in T that have not been incorporated into U,
then the meaning of P is not defined;
otherwise, {UT does not contain any formal-holes, and therefore} the
meaning of P is as defined elsewhere {1.1.1.e} by the semantics of the
Report•

b) If the {textually} first constituent string-item of a hole-indication
I is composed of some letter-symbol and each other constituent
string-item, if any, is composed of some letter-symbol or some
diglt-symbol, the I "matches" any other hole-indication to which it is
akin {; otherwise, its matching with other hole-indications (whethr akin
or not) is not defined here, but may be defined by local conventions of
the implementation to suit the peculiarities of the local operating
environment}.

{{The standard environment
for each particular-program,
prelude-packets•}}

is enlarged by the inclusion of a user-prelude
into which the user may stuff his own

10.1.1.

A) EXTERNAL :: ... ; user.

f) NESTI user task{d} :
NEST2 particular prelude with DECS{c},

NEST2 user prelude with MODSETY{c},
NEST2 particular program{g} PACK, gQ on{94f} token,
NEST2 particular postlude{i},
where <NEST2> is <NESTI new DECS MODSETY STOP>•

10.1.2
f) Except where explicitly stated otherwise {I0.6.2.a}, each constituent
user-prelude of all program-texts is EMPTY.

Part III- Compilation Systems

{{Although the Report defines the meaning of a particular-program (and, with

AB 43p.40

the addition of the new section 10.6, of a collection of compatible packets)
without reference to the process of compilation (except pragmatically in
2.2.2.c), a proposal for separate compilation will not be of practical use
unless the majority of implementations observe at least some degree of
consistency in their compilation systems.}}

10.7. Compilation systems

An implementation of ALGOL 68 {2.2.2.c} in which packets of a
{compatible} collection {10.6.2} are compiled into a collection of
object-modules should conform to the provisions of this section.

10.7.1. Syntax

A)* LAYERS :: LAYER ; LAYERS LAYER.

a) compilation input :
MOID NEST new MODSETY LANGUAGE stuffing packet{A6a,b},

MOID NEST hole interface{d},
joined module interface with MODSETY{b,c} ;

NEST new MODSETYI MODS definition module packet of MODS{A6c},
MOID NEST hole interface{d},
Joined module interface with MODSETYI{b,c},
module interface with MODS{d} option ;

new LAYERI new DECS MODSETY STOP particular program{AlE},
{void new LAYERI new DECS STOP hole interface,}
unless <DECS> contains <module>,
joined module interface with MODSETY{b,c} ;

new LAYERI new DECS MODSETYI MODS STOP
prelude packet of MODS{A6d},

{void new LAYERI new DECS STOP hole interface,}
unless <DECS> contains <module>,
Joined module interface with MODSETYI{b,c},
module interface with MODS{d} option.

b) Joined module interface with MODS MODSETY{a,b} :
module interface with MODS{d},

joined module interface with MODSETY{b,c}.
c) Joined module interface with EMPTY{a,b} : EMPTY.
d) Hyper-rules are to be added for the hypernotions "MOID NEST hole
interface", "module interface with MODS" and "MOID NEST object module"
{the first two to be} such that, from the terminal production of each
MOID-NEST-hole-interface (each module-interface-with-MODS), a 'MOIDI
NESTI' equivalent {2.1.1.2.a} to 'MOID NEST' (a 'MODSI' equivalent to
'MODS') can be reconstructed. {The forms of these hyper-rules are
otherwise undefined, and their terminal productions will most probably be
in some cryptic notation understood only by the compiler.}

{The inclusion of the hypernotions "void new LAYERI new DECS STOP hcle
interface" within pragmatic remarks in rule a is intended to signify that
this information (which describes the standard environment) must clearly
be available to the compiler, but that it may well not be provided in Lhe
form of an explicit hole-interface.}

10.7.2. Semantics

a) A compilation-input C may be compiled by a compiler. The output from
the compiler is determined as follows:
Case A: the packet of C is a MOID-NESTI-ALGOL68-stuffing-packet:

. the compiler-output is a MOID-NEST1-obJect-module;

AB 43p.41

Case B: the packet of C is a NEST1-particular-program:
. the comiler output is a void-NEST1-object-modu!e ;

Case C: the packet of C is a NEST1-definition-module-packet-of-MODS or a
NEST1-prelude-packet-of-MODS D:

• the compiler output consists of
(i) a void-NEST1-object-module, and
(ii) if the module-interface-with-MODS-option of D is EMPTY, a
module-interface-with-MODS {; otherwise, the constituent module-
interface-with-MODS of D is said to be an "imposed interface"
(obtained from the previous compilation of a similar packet) and the
compiler must fail if the imposed interface is no longer "consistent"
with the packet};

{Case D: the packet of C is a LANGUAGE-stuffing-packet where 'LANGUAGE' is
not 'ALGOL68':

• the compilation process is not defined by this Report;}
For each MOID-NEST-LAYERS-formal-hole contained in the NEST-packet of C,

. the compiler output includes, additionally, a MOID-NEST-LAYERS-
hole-interface.

b) The module-interfaces and hole-interfaces output by the compiler may
subsequently be used, together with appropriate packets, as
compiler-inputs. If a collection of packets, including a
particular-program P whose meaning is defined {I0.6.2.a} in the context of
that collection, is compiled so as to produce a corresponding set of
object-modules, then the meaning of those object-modules is the same as
the meaning of P.

{A complete system may include a compiler, a loader, and a means to
maintain a library of packets, hole-interfaces, module-interfaces and
object-modules (the means might be an operating system, a utility program
written for the purpose, or a filing cabinet plus a little girl). The
assemblage of the various objects required for a compilation-input and the
disposal of the various compiler outputs may involve the user in writing
control cards, or pragmats, or other forms of command, and in providing
libraries of such objects to be scanned. Neither the detailed contents of
such a system nor the specific forms of such commands are defined in this
Report•

If a packet P is modified and re-compiled, the system should ensure that
the revised collection of object-modules cannot be used until all packets
dependent upon P have been re-compiled. It is suggested that all the
outputs produced by a given compilation be given a unique serial number
from a monotonically increasing set (the date and time, for example) and
that object modules be aware of the serial numbers of other compilationa
upon which their validity depends. However, where the compiler detects
that a hole- or module-interface is unchanged from a previous compilation
of the same packet, or if a module-interface is imposed on a compilation
and the compiler is able to produce an object-module "consistent" with
that module-interface, then the old serial number may be retained. The
definition of "consistent" should be as liberal as possible• For example,
it should be possible for the compiler to compile a packet consistent with
the object-module produced by a previous compilation of that packet even
if the indicators published by the packet are now declared in a different
order or if declarations for additional indicators have been added.}

AB 43p.42

Implementation methods for Modules and Separate compilation.

This implementation description does not contain language definition. It
presents various ways in which the above features can be implemented. No
implementer should feel committed to do things as described here, though he
may well profit from the thought that has gone into these methods. The same
language facilities may well be implementable in other ways. Two mechanisms
are described. One is a mechanism for implementing separate compilation, and
the other a mechanism for implementing definition modules.

The notation "MR" will be used to refer to the Revised Report as extended
by the Formal Definition above.

I Separate compilation.

The separate compilation methods for the features defined above hinge on
the idea of a "compilation data base". This data base contains information
about the various separately compiled parts of a program, and is used to
enable static mode checking to be done across compilations and to enable
efficient object code to be generated. The data base contains information
grouped into "interfaces". Each interface contains the relevant information
from a single separate compilation and is constructed by the compiler in
addition to the usual object code. When a program is compiled whose meaning
depends on other separately compiled parts, the compiler extracts the
relevant interfaces from the data base. The data base itself may be
implemented in different ways, depending on the implementation environment.
It may, for example, be managed directly by the compiler, by an operating
system which demands its own extra control cards, or even by a clerk with a
drawer full of paper tapes. If the operating system's file system is divided
into subsets for various users with varying access rights, it is probably
wise to permit the data base to be spread out throughout the operating
systems's files in the same way. Each user then has control of that part of
the data base that relates to his own programs, without requiring
installation management to set up separate administration procedures for
ALGOL 68.

The production rules which follow often contain ampersands ("&") instead
of commas. This is to indicate that the various members must be available in
some form, but that nothing is said about their textual order, or even
whether a textual order exists. The data may legitimately reside in an
arbitrarily inscrutable data base management system and be pieced together
by the compiler.

t . t Compilation input.

compilation input :
definition module packet &

imposed module interface option &
joined module interface {for definition modules, if any,

accessed by this one} &
bole interface option {if we are inside a hole} ;

particular program &
joined module interface {for definition modules accessed

by the particular program} ;
stuffing packet &

hole interface &
joined module interface {for definition modules, if any,

accessed by the stuffing}.

AB 43p.43

source packet :
definition module packet ;
particular program ;
stuffing packet.

The programmer writes source-packets.

joined module interface :
set of module interfaces.

The phrase "set of" is used in its usual mathematical meaning.

imposed module interface :
module interface.

interface:
hole interface ;
module interface.

Interfaces are not written by the programmer, but are produced by a
compiler when a definition-module-packet, or a source-packet containing a
hole, is compiled. Interfaces may later be fed back into subsequent
compilations or recompilations to ensure compatibility. A single interface
may be used in many different compilation-inputs. The syntax and semantics
of interfaces are Implementation-dependent, but each interface must contain
the modes and indications published by the module or available to the
stuffing, as well as the "access algorithms" which enable the compiler to
generate correct code for applied-indicators in a separate compilation.

If a definition module is altered and recompiled (perhaps to improve
performance or to fix a bug), an interface from a previous compilation of
that same definition module may be "imposed" in an attempt to ensure
compatibility with the existing object code of other packets accessing that
definition module. If the compiler is able to achieve compatibility, it does
so; otherwise, it will complain and produce incompatible code and a new
interface. Clearly, if less information resides in the interface, it will be
easier to make program changes, but the resulting object code may be less
efficient.

Module-interfaces may be used in several different ways, depending on
practical aspects of the implementation.

(I) Bottom-up coding
If a program is being coded bottom-up, with each module thoroughly
debugged before the ones that access it, derived interfaces are
convenient. When a definition module is compiled, the compiler
will produce a module-interface as well as the usual object code.
This module-interface must then be fed back into the compiler when
the module's test procedures are compiled, and later, when a
program accessing the definition module is compiled. This
module-interface will be checked for compatibility with its usage
in the accessing program, thus maintaining mode security.

(2) Top-down coding
This method is based on the principle that, when programming, the
interface between program components should be defined logically
before the components are constructed. The programmer (or perhaps
his manager) will therefore start by defining an "interface
definition" for a definition module. This interface definition is
written as a definition-module-packet with skips or holes in the
proper places (assuming the compiler does not propagate the
skip-value or hole into the interface). It is compiled, the object
code is discarded, and the compiler-produced interface is
preserved. The interface is presented to the programmer when he

AB 43p.44

writes the definition module. The interface is imposed on the
compiler when it compiles the definition module, and is also
provided when it compiles the accessing program. In case of
incompatibility, the compiler will complain. The access algorithms
and other internal implementation information will be determined
for the compiler by the interface.

(3) Program libraries.
Interfaces of definition modules in public libraries must also be
provided as part of the library. It is up to the library
maintainer whether he wishes to use imposed interfaces to make
changes less painful.

If a compiler accepts "multiple separate compilations", that is, if it
accepts many compilation-inputs at one go, some mechanism (such as library
search) should be provided so that a single copy of each module-interface
will suffice for all compilations. The existence (yes, mere existence) of
multiple (and therefore independent) copies involves the risk that
interfaces may not match when separately-compiled packets are loaded and run
together.

I. 2 Holes

Holes are useful if a large existing program must be cut into pieces,
perhaps because it has grown or because it is transported to an installation
WhOSe compiler has less capacity. Unlike definition modules, holes permit a
program to retain its original structure when it is cut up.

Furthermore, the compile-time flow .of information through a hole is
exclusively from the root to the leaves of the complete parse tree. Holes
may thus be used to prevent a compiler from taking advantage of any
knowledge about the contents of a construct. This may be important if parts
of a program are to be changed independently.

The hole mechanism has been called a "top-down" method for separate
compilation; this is perhaps a misnomer in that in top-down programming the
refinements usually consist of new procedures and modules, and not of
further contents for holes in a parse tree.

The object code of a hole contains a call to its stuffing, using
operating-system external linkage conventions and using the hole-indicator
as an external symbol.

It is not necessary to start a new display level for each nested
stuffing, but it may be convenient. If this is not done, some stack
mechanisms may have difficulty determining the proper activation record size
on procedure entry. If the constituent unit of a routine-text is a hole, it
may be wise to compile calls to the procedure using the exterNal-indication
directly instead of via a dummy routine.

1.3 Module- and hole-interfaces.

This section describes some possible contents for interfaces.
implementations may of course do things differently.

module interface :
unique code & external symbol & hole description option &

mode table & definition summary.

hQle interface :
unique code & external symbol & hole description option &

Specific

AB 43p.45

mode table & set of definition extracts.

The unique code may be a possibly compactified version of the
module-interface, a hash code computed from it, a time stamp, or some other
code unique to the interface. These unique codes can be compared at linkedit
or run time to check that object codes run together were indeed compiled to
a corresponding interface. Because hash codes computed from different
interfaces might possibly be duplicates, some implementers might provide a
formal interface-registration utility-program which could perform
system-wide or library-wide synchronization to prevent inadvertent (but
highly unlikely) duplication of codes. Such a registration utility might
even be part of the compiler.

The external-symbol must be sufficient to determine the entry-point at
which execution of the stuffing or definition module is to begin.

The hole-description-option specifies into which nested sequence of
holes, if any, the packet producing the interface is to be nested. This is
necessary to check at compile-time that the necessary environment is indeed
available at the accession of a definition module, which may have been
compiled in a different nested sequence of holes.

The mode-table contains a full description of every mode required in the
definition-summary or set-of-definition-extracts. It may have undergone mode
equivalencing to reduce redundancy.

The definition-summsry contains information about all definitions
published by the definition module or hole. Its structure closely follows
the metasyntax of REVS {MRI.2.3}.

definition summary{REVS} :
set of definition groups.

definition group{REV} :
module identity{TAU} & set of definition extracts{DECSETY INKS}.

definition extract{DEC} :
mode extract{DEC} ;
operation extract{DEC} ;
priority extract{DEC} ;
identifier extract{DEC} ;
definition module extract{DEC} ;
invocation extract{INK}.

mode extract :
mode marker & mode indication & mode & mdextra.

operation extract :
operation marker & operator & mode & mdextra.

priority extract :
priority marker & operator & integer priority & mdextra.

identifier extract :
identifier marker & identifier & mode & mdextra.

definition module extract{MOD} :
definition module marker & definition module indication{TAB} &

definition summary{REVS} & mdextra.

invocation extract{INK} :
module identity{TAU}.

AB 43p.46

mdextra :
extra machine-dependent information.

The extracts are sufficient to enable reasonable object code to be
generated to access the publications of a definition module without any
further information in the mdextra, since a compiler can use a canonical
algorithm to determine the access algorithms for the published indicators.
Hole-interfaces, however, will likely be far more complicated, and may
require extra machine-dependent information to be recorded in the mdextras,
such as display-nesting and displacements for the various indicators.
Extracts should be kept as nonspecific as is compatible with efficiency,
because every datum in the interface makes compatible compilation of a new
version of a packet more difficult. The indicators published by definition
modules can more easily be forced into a canonical format that depends only
upon the DECs than can the indicators from a hole-interface.

If optimization of object-time code is more important than program
flexibility, the compiler can place further implementation-dependent
information into the mdextras. It may, for example, include the values of
known constant indicators, side effect information about procedures, or even
a partially-compiled version of the source code for routines it may wish to
compile in-line.

2 Implementation of definition modules.

2.1 Notation

The text of a definition module M may begin with a Joined-module-call.
Each module-call of the Joined-module-call will be called a "requirement" of
M, and M is said to "require" the corresponding definition modules.

2.2 General strategy.

A definition module can be implemented like a procedure. When it is
invoked, it accesses any definition modules it itself requires and allocates
an activation record on the stack just as a procedure would, and then
executes its prelude. It then returns to its invoker, passing the address of
its activation record to the invoker without freeing its local storage. The
invoker can find the published indicators within the activation record, and
when the time comes to revoke the definition module, the postlude is
elaborated. Only afterward is the stack frame for the definition module
released. Slight variations on this scheme are possible. For example, if the
invoker knows the necessary size, the definition module's activation record
can be allocated within that of the invoker. (This optimization is possible
with nonrecursive procedures as well.)

Section 2.3 describes the run-time activity necessary for implementation
in further detail. Section 2.4 describes how definition modules can be
fitted into existing ALGOL 68 parsing techniques.

2.3 Implementation of sharing

There are several methods of implementing sharing, that is, of deciding
whether a module-call actually requires a definition module to be executed,
or whether it merely accesses a former invocation. It can be done completely
at compile-time, it can be done completely at run time, and mixtures of
these two methods are also possible. The compile-time methods are simpler,

AB 43p.47

but the run-tlme methods are more flexible. The run-time methods are
recommended during program development, since otherwise, as we shall see,
internal changes in a definition module may cause much accessing code to be
recompiled even if it is not changed.

Section 2.3.1 presents a possible strategy for implementing definition
modules, on the assumption that all sharing decisions are made at compile
time. After that, in section 2.3.2, the necessary modifications are
described for doing this at run time.

2.3.1 Compile-time sharing

This method is possible if it is known at compile-time whether each
module-call involves an actual invocation or merely accesses some previous
invocation. This information is available if:

(I) the definition module in question is part of the same
compilation-packet as its module-calls(s), and no possibility exists
for any unknown accessions from separate compilations, or

(2) the compiler always places all the INKS in the interface-packet of a
definition module.

Under these assumptions, when a compiler comes to compile a module-call of a
definition module M, it first tests whether the NEST includes an INK from
another module-call of the same module. If so, no actual invocation is done,
and in the closed-clause or definition module which uses the accession, code
is generated to refer to the activation record from the older invocation
instead.

If the accession involves an actual invocation, the compiler first checks
whether M has any requirements. If so, each of these other definition
modules is first accessed. This is a recursive process, involving the entire
mechanism of NEST searches, accessing further requirements, etc. Afterward,
M is called, with the pointers to the activation records of the requirements
as parameters.

The entry-point used for calling M is the beginning of its prelude. The
return address is the beginning of the code that may use the publications of
the invocation; in the case of a joined-module-call this will be the next
module-call on the list, if any.

Upon entry, M first establishes an activation record for its own use. If
the size of this activation record is known by the invoker, the invoker can
have allocated it as part of its own activation record and can have passed
the address of the activation record to M as parameter.

The prelude of M is then elaborated. Within M, and within any procedures
within M, local and global variables are obtained via a normal display or
static chain mechanism starting from the new activation record.

At the end of the prelude, M returns, without freeing its activation
record. If M allocated its own activation record, it passes the activation
record pointer back to the invoker. The code which uses the publications of
M is then executed. The publications of M can be reached by displacements
from the activation record pointer. If the activation record was part of the
invoker's activation record, different displacements from the start of the
invoker's own activation record can be computed at compile time and used
instead.

When its time comes, M is revoked by calling its postlude, if any,
providing it with the address of the activation record of M in some way. The

postlude is elaborated, and returns, again without freeing the activation
record of M.

AB 43p.48

Back at the invoker, the definition modules invoked as requirements of M
are also revoked. When all the definition modules involved in the
access-clause have been duly revoked, the activation records can all be
freed by reducing the stack pointer.

If labels were to be permitted in postludes (they are not, but an
implementer might wish to implement the stop from the standard-postlude in
this way), it might be possible for the prelude to go to the postlude
directly instead of waiting for an honest revocation. To avoid trouble, an
extra return address would have to be provided when the prelude is called to
enable the postlude to return properly. This return address would be that
norL~ally provided when the postlude is called. It is to prevent this and
other worse obscurities that labels cannot be declared in postludes.

A problem with the above method is that it makes the interfaces for
separate compilation unduly restrictive. It becomes difficult, for example,
to restructure a large library by organizing its internal procedures into
different combinations of definition modules, without requiring massive
recompilation of all user code. These problems can be obviated with a
suitably clever dedicated linkage editor, but the implementer may not have
this freedom.

2.3.2 Run-time sharing

If the above method is not suitable, run-time analysis can be performed
for making sharing decisions. These methods do not have the execution
efficiency of the compile-time methods, but may have other advantages. In
the absence of a special ALGOL 68 linkage editor, the run-time mechanisms
may indeed be necessary during program development to retain a modicum of
flexibility. They are efficient if definition modules are only rarely
accessed. This will hold if definition modules are used mainly for
establishing the large-scale structure of the program, and procedure calling
is used for normal traffic.

Existing accessions are recorded in an in-core data base at run time.
Each accession of some definition module M causes an "activator" to be
constructed and placed into the data base. This activator is made to point
to a linked list of the activators for the definition modules required by M.
These other activators are placed on the list one at a time, as their
definition modules are accessed. These activators point to further linked
lists. The activators are thus linked together into a tree structure which
mimics the INKS {MR3.6.1}. The roots of these activator trees are linked
according to the syntactic nesting of activations within the program, from
the inside outwards, parallel to the static link. We give the links the
following names: the linked lists are linked by the 'next' link, and the
sublists are pointed out by the 'sub' llnk.

An "activator" is thus a structure with fields:
- defmod: the definition module, as an entry-point-environment pair,
- actrec: a pointer to an activation record containing the publications

o f the definition module,
- revoker: the address of the postlude,
- sub: the address of another activator (which starts a sublist), and
- next: the address of another activator (in the same linked list).

A module-text FO0 is accessed as follows:
- The accessor makes a new activator FO01.
- The accessor fills in the entry point-environment pair of the definition

module FO0 being accessed into 'defmod of FO01'.

AB 43p.49

- The accessor fills in the "next" link of FO01 to point
- if the accessor is the first module-call of the requirements of a

module-text,
- to the activator X created by the accessor's own invoker, or

- if the accessor is a second or subsequent module-call of a
joined-module-call,
- to the activator of the previous module-call of the

joined-module-call, or
- if the accessor is the first module-call of an access-clause C,

- to the "principal" activator of the smallest access-clause or
module-text containing C, or nil if there is none.

- This other activator can be found by the same sort of addressing
formula as is used for ordinary variables; it is as if each new
module-call declared some special indicator and the statically
most local definition of the special indicator were always used.

- Then the accessor Jumps to a service routine. The service routine
receives as parameters

- a reference to the activator FO01, and
- two labels:

after prelude:
pointing to the controlled-clause of the access-clause (or
its analogue for the revelation of a definition module),

after postlude:
pointing to the code to be executed after the postlude has
been executed. For the first module-call in the
joined-module-call of the access-clause, this will be the
address of the code to be executed after the access-clause
or module-text. For a second or subsequent module-call of a
joined-module-call, this will be the address of an indirect
jump to the revoker (see below) of the previous module-call;
this revoker is the postlude address of the previous
module-call.

- The service routine searches the tree of activators rooted at FO01 with
branches 'next' and 'sub' to determine whether there is already another
activation of the definition module FO0 in the tree.

- I f so,
- the 'revoker of FO01' (which contains the address of the postlude)

is set to after postlude (since no actual invocation is done, no
actual revocation will be done either).

- the 'actrec of FO01' (the activation record pointer) is filled in
with the activation record pointer of the (other) invocation, if
any, and otherwise further elaboration is undefined (in this case
the other activation record is not yet complete).

- If not, the accession is actually an invocation, and
- the object code for the module-prelude of FO0 is called, giving it

the activator FO01 as parameter.
- FO0 receives control, sets up an activation record of its own, and

accesses its requirements in order (this will have the effect that
the activators of these requirements come to be a linked list
linked by the 'next' link and pointed to by 'sub of FO01').

- When FOO's requirements have been met, FO0 makes a copy FO02 of
the activator FO01, and sets the next-pointer of the copy FO02 to
point to the principal activator of the smallest access-clause or
module-text containing FO0 (or nil if there is none). This copied
activator FO02 is termed the "principal" activator of FO0, and is
used in its prelude's and postlude's own private module-calls.
FO02 is necessary because the prelude and postlude are in a
different NEST from the invoker.

- When elaboration reaches the end of the prelude, FO0
- fills the address of the postlude into 'revoker of FO01',

AB 43P.50

- fills the address of its activation record into FOOl and FOO2,
and

- goes back to the invoker using the after prelude address
without freeing any activation records.

- If the accessor was a requirement of a definition module,
- the accessor sets 'next of FOOl' to point to the list of activators

of previous requirements of FO01 (formerly pointed to by sub of X),
and sub of X is updated to point to FOOl (this places FOOl on the
sublist of activators of requirements of X),

- Dut otherwise, if the accessor was the last module-call of the
joined-module-call of an access-clause, FOOl is termed the "principal"
activator of that access-clause.

- When the definition module is revoked by the accessor, the accessor goes
to the routine pointed to by the postlude address of the activator FOOl.
This turns out to be the address of the postlude if the definition
module was actually invoked; it is the after postlude address otherwise.

Before it finally returns, the postlude revokes the definition
modules that FOO accessed.

- When the elaboration of an access-clause is complete, the run-time stack
can be cut back to its size before the elaboration of the access-clause
started (except that the yield of the clause must be preserved). This
frees the activation records and activators of any newly-invoked
definition modules without damaging the activation records found via
sharing.

Activation records are not freed when elaboration of a module-postlude is
complete, even if that definition module invoked other definition modules.
They are freed only when some access-clause is complete. In this way the
scopes of all activation records created by a single joined-module-call can
be the same.

Notice that a jump which Jumps out of an invocation will free the
activation record by simply popping the stack without executing the
postlude. This is consistent with the behaviour of jumps elsewhere.

A "redundant" activator is one which did not cause a new invocation, but
simply found an old activation record. If the chain of activators becomes
too long, it can be shortened by linking around redundant activators instead
of through them.

If any other active activator of a definition module is statically known
at the point of activation, that activator can be used instead of repeating
any accession overhead.

2.4 Outline of parsing algorithm.

2.4.1 Description

The following processes must be present in some form in an ALGOL 63
compiler.

-I- Distinguishing mode, operation, and priority declarations and
determining the ranges in which they hold sway, and building up a
definition dictionary containing this information.

-2- Determining whether each applied bold-TAG-symbol is an applied mode,
operation, and/or priority indication.

-3- Distinguishing all declarations.
-4- Either from the information from -I- or -3-, constructing a mode

table.

AB 43P.51

-5- Mode equivalencing
-6- Identifyingthe defining occurrences for all applied indicators.

These processes need not be distinct. Some can be combined easily; others
can be combined only if one requires declaration before use. Processes -2-
and -3- are often carried out concurrently with context-free parsing. It is
at this time that the definitive definition dictionary can be built. It
resembles the earlier definition dictionary, but identifier definitions are
included as well.

Definition modules are included in this process as follows:
-I- Definition module definitions and accessions are distinguished and

entered into the definition dictionary too during process -I-. To
each definition module declaration entry, the compiler must attach
the set of definitions the definition module itself publishes and the
module-indications it publicly accesses. To save space at
compile-time, this may be combined with the set of definitions
available within the definition module's own range, but a bit must be
added to indicate whether each definition or module-call is public.
Identifier declarations are not collected, since it is necessary to
distinguish mode indications from operators in order to distinguish
their declarations.

-2- In process -2-, the applied indications may now turn out to be module
indications. Upon range entry, module-calls are identified. When an
applied-module-indication has been identified, extra definition
entries are added to the definition dictionary for the new range, one
for each published definition in the accessed definition module.
These extra definition dictionary entries refer to the module-call
they arise from. The extra mode, operation, priority, and definition
module definitions are thus made available for identification during
processing of the range. This second phase is probably the proper
moment to perform a library search through the compilation data base
for modules which are accessed but not declared by the programmer.

-4- The preliminary mode table can be built only when module-indications
have been identified. It must therefore use information from process
-3- instead of -I-.

-5- Mode equivalencing occurs as usual.
-6- Coercion and identification occur as usual, too, except that the

extra NEST entries created by accessions must also be processed.

2.4.2 Example

Consider the following example:
BEGIN #ci# LOC INT b;

MODULE B = DEF #c2# PUB MODE A = REAL FED;
BEGIN #c3#

BEGIN #c4#
b := 2;
ACCESS #c5# B

(#c6# b := 2; A b; SKIP)
END;
MODULE B =

DEF #c7#
PUB OP A = (#c8# INT i)VOID: SKIP

FED;
SKIP

END
END

In phase -I-, the corrals are identified by the occurrence of BEGIN-END,
DEF-FED, and (-) brackets and by ACCESS (a corral is a bracket-pair which

AB ~3p.52

might turn out to be a range). Several declarations are detected:
dl. MODULE B in corral ci
d2. MODE A in corral c2 (published by dl)
d3. ACCESS B in corral c5
d4. MODULE B in corral c3
d5. OP A in corral c7 (published by d4)

The identifier declarations have not yet been detected because of
uncertainty whether bold words are modes or operators. The next scan over
the program now has enough information to ide~tlfy bold words. At each
corral entry, it examines the above table to determine which bold words are
defined there.

corral ci:

MODULE B (which will publishMODE A when accessed)
corral c2 within oi:

MODE A
corral c3 within ci:

MODULE B (redefining B)(which will publish OP A when accessed)
corral c4 within c3:

nothing new
corral c5 within c4:

OP A (from ACCESS B)
corral c6 within c5:

nothing new
corral c7 within c3:

OP A
corral c8 within c7:

nothing new

Because it is now known which operators and modes are declared where,
process -3- can now determine which identifiers are declared for later
processes to use:

corral ci declares LOC INT b.
corral c6 does not declare A b, because A is an operator there.
corral c7 declares INT i.

Process -3- can still be performed concurrently with process -2-.

The rest of identification and coercion can proceed as usual.

2.5 Avoiding loading of procedures.

If a definition module is used as a library, it may be necessary to avoid
loading object code for routines that are not used by the user. Although
mechanisms for doing this are inherently implementation-dependent, most
loaders have library search facilities for loading only those
separately-compiled object files that have been referred to (some loaders
can even delete unreferenced fragments of code within a single object file).
On such a linking loader, we can use the following mechanism. The body of
the routine of a declaration can be a hole:

PROC p = (REAL a, b) REAL: HOLE "foo"
It is possible to record this external name "foo" in the interface. An
external reference need be present in object code only

- if the procedure is called, or
- if a routine-value is actually required (perhaps to assign it to a
procedure variable).

The library search of the linking loader can then be used to ensure that the
object code for the procedure, which is compiled separately, is loaded only
if needed. It is possible to avoid uslnK holes for this if the compiler is
willing to take over program library management completely instead of Just
producing object code files to be placed into a library by an independent

AB 43P.53

utility. Of course, if the operating system has a half-decent linking loader
(most do not), or if the ALGOL 68 implementer provides his own, the above
techniques should be unnecessary.

2.6 A use for the escape character.

If it is desired to perform many separate compilations with many
different compiler-lnputs in one input file using a single run of the
compiler, control cards may be needed to separate packets in a way that is
independent of syntax errors within the packets. It should be noticed that
the standard hardware representation does not enable an ALGOL 68 program
line to begin with a single apostrophe (except in comments or pragmats).
This may be a natural choice as control-card indicator for some
implementations. {Why do we still speak of control cards in the
telecommunications age?}

2.7 A new view of the standard prelude.

The thought might be entertained to implement the particular-program as
the stuffing of some hole in the standard-prelude. This would be unwise on
some implementations, since it would mean that all ALGOL 68 programs would
get the same external entry-point name. It may be better to implement the
standard-prelude as a collection of definition modules implicitly accessed
by all other source-packets. Of course, some kludge will then be necessary
for the stop in the standard-prelude. If the standard-prelude should
actually be written in ALGOL 68, some mechanism will also be necessary to
suppress the implicit accession of the standard prelude when it itself is
being compiled.

2.8 A tricky implementation method for strict stack machines.

A "strict stack machine" is a machine whose hardware strictly enforces a
procedure-stack memory hierarchy of the style of ALGOL 60. Strict stack
machines are difficult to use with unusual control structures because they
impose the wrong structure on the program, but definition modules can still
be squeezed in.

A definition module can be viewed as a procedure M which accepts as
arguments

- an activator A, and
- a procedure P.

It checks whether to make a new invocation, and
- if so, makes a copy of the activator, elaborates the prelude, and

fills in appropriate activators, as usual,
- and otherwise, digs up the old invocation.

It then calls P, giving it as parameters
- each published indicator, and
- a procedure Q, which will elaborate the postlude when called.

When P returns, M immediately returns.

An access-clause sets up an activator, and then calls the definition
module, giving it as parameters:

- the activator A,
- a procedure P whose body is the ENCLOSED-clause of the access-clause

and which accepts the defined-indicators and the postlude procedure 0
as parameters.

For access-clauses with more than one module-call, all the postludes must
be called before the ENCLOSED-clause returns.

